Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(38): 25938-25948, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28933487

RESUMO

The resistive switching characteristics of a scalable IrOx/Al2O3/W cross-point structure and its mechanism for pH/H2O2 sensing along with glucose detection have been investigated for the first time. Porous IrOx and Ir3+/Ir4+ oxidation states are observed via high-resolution transmission electron microscope, field-emission scanning electron spectroscopy, and X-ray photo-electron spectroscopy. The 20 nm-thick IrOx devices in sidewall contact show consecutive long dc cycles at a low current compliance (CC) of 10 µA, multi-level operation with CC varying from 10 µA to 100 µA, and long program/erase endurance of >109 cycles with 100 ns pulse width. IrOx with a thickness of 2 nm in the IrOx/Al2O3/SiO2/p-Si structure has shown super-Nernstian pH sensitivity of 115 mV per pH, and detection of H2O2 over the range of 1-100 nM is also achieved owing to the porous and reduction-oxidation (redox) characteristics of the IrOx membrane, whereas a pure Al2O3/SiO2 membrane does not show H2O2 sensing. A simulation based on Schottky, hopping, and Fowler-Nordheim tunneling conduction, and a redox reaction, is proposed. The experimental I-V curve matches very well with simulation. The resistive switching mechanism is owing to O2- ion migration, and the redox reaction of Ir3+/Ir4+ at the IrOx/Al2O3 interface through H2O2 sensing as well as Schottky barrier height modulation is responsible. Glucose at a low concentration of 10 pM is detected using a completely new process in the IrOx/Al2O3/W cross-point structure. Therefore, this cross-point memory shows a method for low cost, scalable, memory with low current, multi-level operation, which will be useful for future highly dense three-dimensional (3D) memory and as a bio-sensor for the future diagnosis of human diseases.

2.
Sci Rep ; 7(1): 11240, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894240

RESUMO

Formation-free multi-level resistive switching characteristics by using 10 nm-thick polycrystalline GeOx film in a simple W/GeOx/W structure and understanding of switching mechanism through redox reaction in H2O2/sarcosine sensing (or changing Ge°/Ge4+ oxidation states under external bias) have been reported for the first time. Oxidation states of Ge0/Ge4+ are confirmed by both XPS and H2O2 sensing of GeOx membrane in electrolyte-insulator-semiconductor structure. Highly repeatable 1000 dc cycles and stable program/erase (P/E) endurance of >106 cycles at a small pulse width of 100 ns are achieved at a low operation current of 0.1 µA. The thickness of GeOx layer is found to be increased to 12.5 nm with the reduction of polycrystalline grain size of <7 nm after P/E of 106 cycles, which is observed by high-resolution TEM. The switching mechanism is explored through redox reaction in GeOx membrane by sensing 1 nM H2O2, which is owing to the change of oxidation states from Ge0 to Ge4+ because of the enhanced O2- ions migration in memory device under external bias. In addition, sarcosine as a prostate cancer biomarker with low concentration of 50 pM to 10 µM is also detected.


Assuntos
Biomarcadores Tumorais/análise , Testes Diagnósticos de Rotina/métodos , Peróxido de Hidrogênio/análise , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Sarcosina/análise , Testes Diagnósticos de Rotina/instrumentação , Humanos , Masculino , Oxidantes , Oxirredução
3.
Sci Rep ; 7(1): 4735, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680111

RESUMO

Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiOx/TiN structure have been investigated for the first time. The as-deposited amorphous BaTiOx film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba+ and Ba2+ through measuring H2O2 with a low concentration of 1 nM in electrolyte/BaTiOx/SiO2/p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiOx/TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.

4.
Nanoscale Res Lett ; 11(1): 389, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27605241

RESUMO

Post-metal annealing temperature-dependent forming-free resistive switching memory characteristics, Fowler-Nordheim (F-N) tunneling at low resistance state, and after reset using a new W/WO3/WOx/W structure have been investigated for the first time. Transmission electron microscope image shows a polycrystalline WO3/WOx layer in a device with a size of 150 × 150 nm(2). The composition of WO3/WOx is confirmed by X-ray photo-electron spectroscopy. Non-linear bipolar resistive switching characteristics have been simulated using space-charge limited current (SCLC) conduction at low voltage, F-N tunneling at higher voltage regions, and hopping conduction during reset, which is well fitted with experimental current-voltage characteristics. The barrier height at the WOx/W interface for the devices annealed at 500 °C is lower than those of the as-deposited and annealed at 400 °C (0.63 vs. 1.03 eV). An oxygen-vacant conducting filament with a diameter of ~34 nm is formed/ruptured into the WO3/WOx bilayer owing to oxygen ion migration under external bias as well as barrier height changes for high-resistance to low-resistance states. In addition, the switching mechanism including the easy method has been explored through the current-voltage simulation. The devices annealed at 500 °C have a lower operation voltage, lower barrier height, and higher non-linearity factor, which are beneficial for selector-less crossbar memory arrays.

5.
Nanoscale Res Lett ; 10(1): 392, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446075

RESUMO

It is known that conductive-bridge resistive-random-access-memory (CBRAM) device is very important for future high-density nonvolatile memory as well as logic application. Even though the CBRAM devices using different materials, structures, and switching performance have been reported in Nanoscale Res. Lett., 2015, however, optical switching characteristics by using thermally grown Ge0.2Se0.8 film in Cu/GeSex/W structure are reported for the first time in this study. The Cu/GeSex/W memory devices have low current compliances (CCs) ranging from 1 nA to 500 µA with low voltage of ±1.2 V, high resistance ratio of approximately 10(3), stable endurance of >200 cycles, and good data retention of >7 × 10(3) s at 85 °C. Multi-steps of RESET phenomena and evolution of Cu filaments' shape under CCs ranging from 1 nA to 500 µA have been discussed. Under external white-light illumination with an intensity of 2.68 mW/cm(2) (wavelength ranges from 390 to 700 nm), memory device shows optical switching with long read pulse endurance of >10(5) cycles. This CBRAM device has optically programmed and electrically erased, which can open up a new area of research field for future application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa