Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(23): 26055-26063, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857344

RESUMO

Linearly-polarized magnetic dipole (MD) scattering as intense as Rayleigh scattering is reported in transparent garnet crystals and fused quartz through a magneto-electric interaction at the molecular level. Radiation patterns in quartz show the strongest optical magnetization relative to electric polarization ever reported. As shown in an accompanying paper, quantitative agreement is achieved with a strong-field, fully-quantized theory of magneto-electric (M-E) interactions in molecular media. The conclusion is reached that magnetic torque enables 2-photon resonance in an EH* process that excites molecular librations and accounts for the observed upper limit on magnetization. Second-order M-E dynamics can also account for unpolarized scattering from high-frequency librations previously ascribed to first-order collision-induced or third-order, all-electric processes.

2.
Opt Express ; 24(23): 26064-26079, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857345

RESUMO

A fully quantized analysis is presented on the origin of induced magnetic dipole (MD) scattering in two-level diatomic molecules. The interaction is driven by dual optical fields, E and H*, and is universally allowed in dielectric optical materials, including centrosymmetric media. Leading terms of the interaction are shown to be quadratic and cubic with respect to the intensity, predicting an upper limit for the induced magnetic dipole scattering intensity (IMD∝m2) that is equal to the electric dipole scattering (IED∝p2). The optical dynamics proceed by first establishing an electric polarization in the system. Then the magnetic field exerts torque on the orbital angular momentum of the excited state, mediating an exchange of orbital and rotational angular momenta that enhances the magnetic moment. The magneto-electric interaction also accounts for second-order, unpolarized scattering from high-frequency librations previously ascribed to third-order, all-electric processes.

3.
Soft Matter ; 12(19): 4318-23, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27079870

RESUMO

Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with their center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arm length. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical, to bean and then to crescent shape, and the angle averaged PDFs change from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. These 2D PDF shapes provide a clear physical picture of the non-zero mean displacements observed in boomerangs particles.

4.
Langmuir ; 30(46): 13844-53, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25357180

RESUMO

We implement microfabricated boomerang particles with unequal arm lengths as a model for nonsymmetric particles and study their Brownian motion in a quasi-two-dimensional geometry by using high-precision single-particle motion tracking. We show that because of the coupling between translation and rotation, the mean squared displacements of a single asymmetric boomerang particle exhibit a nonlinear crossover from short-time faster to long-time slower diffusion, and the mean displacements for fixed initial orientation are nonzero and saturate out at long times. The measured anisotropic diffusion coefficients versus the tracking point position indicate that there exists one unique point, i.e., the center of hydrodynamic stress (CoH), at which all coupled diffusion coefficients vanish. This implies that in contrast to motion in three dimensions where the CoH exists only for high-symmetry particles, the CoH always exists for Brownian motion in two dimensions. We develop an analytical model based on Langevin theory to explain the experimental results and show that among the six anisotropic diffusion coefficients only five are independent because the translation-translation coupling originates from the translation-rotation coupling. Finally, we classify the behavior of two-dimensional Brownian motion of arbitrarily shaped particles into four groups based on the particle shape symmetry group and discussed potential applications of the CoH in simplifying understanding of the circular motions of microswimmers.


Assuntos
Modelos Teóricos , Nanopartículas , Rotação
5.
Phys Rev Lett ; 111(16): 160603, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182246

RESUMO

We investigate the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

6.
Langmuir ; 29(47): 14396-402, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24171648

RESUMO

In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

7.
Opt Express ; 20(11): 11615-24, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714147

RESUMO

We present experimental and theoretical studies of two dimensional periodic arrays of elliptical plasmonic patch nanoantennas. Experimental and simulation results demonstrate that the azimuthal symmetry breaking of the metal patches leads to the occurrence of even and odd resonant cavity modes and the excitation geometries dependent on their modal symmetries. We show that the cavity modes can be described by the product of radial and angular Mathieu functions with excellent agreements with both simulations and experiments. The effects of the patch periodicity on the excitation of the surface plasmon and its coupling with the cavity modes are also discussed.


Assuntos
Nanoestruturas/química , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Nanoestruturas/ultraestrutura
8.
Anal Bioanal Chem ; 396(4): 1415-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20063154

RESUMO

Interactions of proteins with DNA play an important role in regulating the biological functions of DNA. Here we propose and demonstrate the detection of protein-DNA binding using surface-enhanced Raman scattering (SERS). In this method, double-stranded DNA molecules with potential protein-binding sites are labeled with dye molecules and immobilized on metal nanoparticles. The binding of proteins protects the DNA from complete digestion by exonuclease and can be detected by measuring the SERS signals before and after the exonuclease digestion. As a proof of concept, this SERS-based protein-DNA interaction assay is validated by studying the binding of a zinc finger transcription factor WT1 with DNA sequences derived from the promoter of the human vascular endothelial growth factor.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas WT1/metabolismo , Sequência de Bases , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Ágar , Humanos , Dados de Sequência Molecular , Análise Espectral Raman , Proteínas WT1/química , Proteínas WT1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa