Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 83(16): 9497-9503, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29896959

RESUMO

C-Unsubstituted 1,2-diazetidines, a rarely studied type of four-membered heterocyclic compounds, were synthesized through an operationally simple intermolecular vicinal disubstitution reaction. 1,2-Diazetidine derivatives bearing various N-arylsulfonyl groups were readily accessed and studied by experimental and computed Raman spectra. The ring-opening reaction of the diazetidine was explored and resulted in the identification of a selective N-N bond cleavage with thiols as nucleophiles, which stereoselectively produced a new class of N-sulfenylimine derivatives with C-aminomethyl groups.

2.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573177

RESUMO

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Assuntos
Neuropeptídeos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Assunto , Insulina/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo
3.
ACS Chem Neurosci ; 15(1): 169-192, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086012

RESUMO

The development of synthetic agonists for the orphan receptor GPR88 has recently attracted significant interest, given the promise of GPR88 as a novel drug target for psychiatric and neurodegenerative disorders. Examination of structure-activity relationships of two known agonist scaffolds 2-PCCA and 2-AMPP, as well as the recently resolved cryo-EM structure of 2-PCCA-bound GPR88, led to the design of a new scaffold based on the "reversed amide" strategy of 2-AMPP. A series of novel (4-substituted-phenyl)acetamides were synthesized and assessed in cAMP accumulation assays as GPR88 agonists, which led to the discovery of several compounds with better or comparable potencies to 2-AMPP. Computational docking studies suggest that these novel GPR88 agonists bind to the same allosteric site of GPR88 that 2-PCCA occupies. Collectively, our findings provide structural insight and SAR requirement at the allosteric site of GPR88 and a new scaffold for further development of GPR88 allosteric agonists.


Assuntos
Acetamidas , Amidas , Receptores Acoplados a Proteínas G , Acetamidas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade
4.
J Med Chem ; 66(4): 2964-2978, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749855

RESUMO

GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 (1b) as the first in vivo active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties. As a result, we identified a highly potent GPR88 agonist RTI-122 (30a) (cAMP EC50 = 11 nM) with good metabolic stability (half-life of 5.8 h) and brain permeability (brain/plasma ratio of >1) in mice. Notably, RTI-122 was more effective than RTI-13951-33 in attenuating the binge-like alcohol drinking behavior in the drinking-in-the-dark paradigm. Collectively, our findings suggest that RTI-122 is a promising lead compound for drug discovery research of GPR88 agonists.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Estabilidade de Medicamentos , Consumo de Bebidas Alcoólicas/tratamento farmacológico
5.
Org Lett ; 21(10): 3735-3740, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31020841

RESUMO

Addition of catalytic arene C-H to formaldimines has been enabled by Ru(II)-catalyzed amidomethylation with bis(tosylamido)methane as a catalytic formaldimine releaser. The new process provides an atom-efficient and sustainable solution to address the challenges of formaldimines in this type of transformation. Furthermore, new synthetic routes based on this catalytic system have been developed for step-efficient access to N-heterotricyclic core structures that are pharmaceutically relevant.

6.
Chem Sci ; 8(9): 6520-6524, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989677

RESUMO

Catalytic [2 + 2 + 2] cycloaddition with imines has, for the first time, been developed as a practical and selective approach for direct construction of hexahydropyrimidine derivatives from various alkenes. With formaldimines as reagents and simple InCl3 as the catalyst, this ionic [2 + 2 + 2] approach is applicable for a wide scope of alkenes and allenes with various electronic and steric properties, as well as substitution patterns. Through facile hydrolysis of the resulting hexahydropyrimidines, this catalytic process also provides a new synthetic strategy for the aminomethylamination of alkenes and allenes to practically access 1,3-diamine derivatives.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa