Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 446(1-2): 91-103, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29356989

RESUMO

We investigated the eplerenone-induced, PI3K/Akt- and GSK-3ß-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intraperitoneally with eplerenone. On the 15th day, the rats were exposed to I/R injury by 20-min occlusion of the left anterior descending coronary artery followed by 30 min of reperfusion. The hearts were processed for biochemical, molecular, and histological investigations. The I/R injury in diabetic rats inflicted a significant rise in the oxidative stress and apoptosis along with a decrease in the arterial and ventricular function and the expressions of PI3K/Akt and GSK-3ß proteins. Eplerenone pretreatment reduced the arterial pressure, cardiac inotropy, and lusitropy. It significantly reduced apoptosis and cardiac injury markers. The histology revealed cardioprotection in eplerenone-treated rats. Eplerenone up-regulated the PI3K/Akt and reduced the GSK-3ß expression. The group receiving wortmannin with eplerenone was deprived eplerenone-induced cardioprotection. Our results reveal the eplerenone-induced cardioprotection against I/R injury in diabetic rats and substantiate the involvement of PI3K/Akt and GSK-3ß pathways in its efficacy.


Assuntos
Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espironolactona/análogos & derivados , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eplerenona , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Wistar , Espironolactona/farmacologia
2.
Int J Mol Sci ; 18(4)2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28375162

RESUMO

We substantiated the role of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in the protective effect of apigenin against the myocardial infarction (MI) in diabetic rats. Diabetes was induced by intraperitoneal administration of a single dose of streptozotocin (55 mg/kg). The study groups included diabetic rats receiving vehicle, apigenin (75 mg/kg/day, orally), GW9662 (1 mg/kg/day, intraperitoneally), and a combination of apigenin and GW9662 for 14 days. The MI was induced in all the study groups except the diabetic control group by subcutaneous injection of 100 mg/kg/day of isoproterenol on the two terminal days. The diabetes and isoproterenol-induced MI was evident as a reduction in the maximal positive and negative rate of developed left ventricular pressure and an increase in the left ventricular end-diastolic pressure. The activities of creatine kinase on myocardial bundle (CK-MB) and lactate dehydrogenase (LDH) were also reduced. Apigenin treatment prevented the hemodynamic perturbations, restored the left ventricular function and reinstated a balanced redox status. It protected rats against an MI by attenuating myonecrosis, edema, cell death, and oxidative stress. GW9662, a PPAR-γ antagonist reversed the myocardial protection conferred by apigenin. Further, an increase in the PPAR-γ expression in the myocardium of the rats receiving apigenin reinforces the role of PPAR-γ pathway activation in the cardioprotective effects of apigenin.


Assuntos
Apigenina/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Infarto do Miocárdio/prevenção & controle , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anilidas/administração & dosagem , Anilidas/farmacologia , Animais , Apigenina/administração & dosagem , Western Blotting , Cardiotônicos/farmacologia , Creatina Quinase Forma MB/metabolismo , Diabetes Mellitus Experimental/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Isoproterenol , L-Lactato Desidrogenase/metabolismo , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , PPAR gama/antagonistas & inibidores , Ratos Wistar
3.
Am J Transl Res ; 10(9): 2810-2821, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323868

RESUMO

We investigated the effect of eplerenone on myocardial infarcted diabetic rats via modulation of the PI3K/Akt pathway and its downstream target GSK-3ß. Diabetes was induced by administration of a single dose of streptozotocin (55 mg/kg IP). Diabetic rats received either eplerenone or PI3k/Akt antagonist (wortmannin) or in combination for 14 days with concurrent administration of isoproterenol (100 mg/kg s.c) on 13th and 14th day. Isoproterenol prompted cardiotoxicity and was demonstrated by a decrease in the maximal positive rate of developed left ventricular pressure, the maximal negative rate of developed left ventricular pressure and an increase in left ventricular end-diastolic pressure along with oxidative stress. Myocardial infarcted diabetic rats exhibited increased myonecrosis, edema, and apoptotic cell death. Treatment with eplerenone significantly improved the redox status of the myocardium. Eplerenone markedly inhibited Bax expression, TUNEL-positive cells, and myonecrosis. On the other hand, the administration of eplerenone and wortmanin did not draw out the same effects, when administered concomitantly or individually. Moreover, the rats treated with eplerenone showed increased expression of PI3K/Akt and decreased its downstream target GSK-3ß. The present study confirms the protective effects of eplerenone on myocardial infarction in diabetic rats via modulation of PI3K/Akt pathway and its downstream regulator GSK-3ß.

4.
Am J Transl Res ; 8(1): 60-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069540

RESUMO

The prevention of doxorubicin (Dox) induced cardiotoxicity may be co-operative to recover future Dox treatment. The aim of this study was to explore the cardioprotective effects of oleanolic acid (OA), an antioxidant agent, on Dox induced cardiotoxicity. OA is a triterpenoid compound, which exist widely in plant kingdom in free acid form or as a glycosidic triterpenoids saponins. Cardiotoxicity was induced in Wistar rats with single intravenous injection of doxorubicin at dose of 67.75 mg/kg i.v for 48 hrs. At 12 hrs of interval following Dox administration the cardioprotective effect of OA (1.5 mg/kg, i.v.) and Amifostine (AMF) (90 mg/kg i.v., single dose prior 30 min) were evaluated. Induction of cardiotoxicity was confirmed by increase in systolic, diastolic, mean arterial pressures, maximal positive rate of developed left ventricular pressure (+LVdP/dtmax, an indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dtmax, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load). Cardiac markers in such as CK-MB, LDH and alterations in ECG. Dox administration showed alteration in Biochemical parameters and endogenous antioxidants. Administration of OA Showed maximal protection against Dox induced cardiac toxicity as observed by reduction in blood pressure, prevention of left ventricular function and attenuation of biochemical and antioxidant parameters. Based on the findings, its concluded that OA can be used as an adjuvant with Dox therapy in treating cancers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa