Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Infect Dis ; 220(5): 743-751, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31045222

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-infected persons are at a higher risk of severe influenza. Although we have shown that a standard-dose intradermal influenza vaccine versus a standard-dose intramuscular influenza vaccine does not result in differences in hemagglutination-inhibition titers in this population, a comprehensive examination of cell-mediated immune responses remains lacking. METHODS: Serological, antigen-specific B-cell, and interleukin 2-, interferon γ-, and tumor necrosis factor α-secreting T-cell responses were assessed in 79 HIV-infected men and 79 HIV-uninfected men. RESULTS: The route of vaccination did not affect the immunoglobulin A and immunoglobulin G (IgG) plasmablast or memory B-cell response, although these were severely impaired in the group with a CD4+ T-cell count of <200 cells/µL. The frequencies of IgG memory B cells measured on day 28 after vaccination were highest in the HIV-uninfected group, followed by the group with a CD4+ T-cell count of ≥200 cells/µL and the group with a CD4+ T-cell count of <200 cells/µL. The route of vaccination did not affect the CD4+ or CD8+ T-cell responses measured at various times after vaccination. CONCLUSIONS: The route of vaccination had no effect on antibody responses, antibody avidity, T-cell responses, or B-cell responses in HIV-infected or HIV-uninfected subjects. With the serological and cellular immune responses to influenza vaccination being impaired in HIV-infected individuals with a CD4+ T-cell count of <200 cells/µL, passive immunization strategies need to be explored to protect this population. CLINICAL TRIALS REGISTRATION: NCT01538940.


Assuntos
Infecções por HIV/imunologia , Imunidade Celular/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/normas , Influenza Humana/prevenção & controle , Adulto , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/complicações , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina A , Imunoglobulina G , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Tailândia , Fator de Necrose Tumoral alfa/metabolismo , Vacinação
2.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848588

RESUMO

The avian influenza A(H7N9) virus continues to cause human infections in China and is a major ongoing public health concern. Five epidemic waves of A(H7N9) infection have occurred since 2013, and the recent fifth epidemic wave saw the emergence of two distinct lineages with elevated numbers of human infection cases and broader geographic distribution of viral diseases compared to the first four epidemic waves. Moreover, highly pathogenic avian influenza (HPAI) A(H7N9) viruses were also isolated during the fifth epidemic wave. Here, we present a detailed structural and biochemical analysis of the surface hemagglutinin (HA) antigen from viruses isolated during this recent epidemic wave. Results highlight that, compared to the 2013 virus HAs, the fifth-wave virus HAs remained a weak binder to human glycan receptor analogs. We also studied three mutations, V177K-K184T-G219S, that were recently reported to switch a 2013 A(H7N9) HA to human-type receptor specificity. Our results indicate that these mutations could also switch the H7 HA receptor preference to a predominantly human binding specificity for both fifth-wave H7 HAs analyzed in this study.IMPORTANCE The A(H7N9) viruses circulating in China are of great public health concern. Here, we report a molecular and structural study of the major surface proteins from several recent A(H7N9) influenza viruses. Our results improve the understanding of these evolving viruses and provide important information on their receptor preference that is central to ongoing pandemic risk assessment.


Assuntos
Epidemias/estatística & dados numéricos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/epidemiologia , China/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/química , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Modelos Moleculares , Mutação , Filogenia , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica
3.
J Virol ; 90(12): 5770-5784, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053557

RESUMO

UNLABELLED: During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential. IMPORTANCE: The H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/química , Vírus da Influenza A Subtipo H5N2/química , Vírus da Influenza A Subtipo H5N8/química , Neuraminidase/química , Neuraminidase/metabolismo , Animais , Animais Selvagens/virologia , Ásia/epidemiologia , Canadá/epidemiologia , Surtos de Doenças , Europa (Continente)/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N2/enzimologia , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N8/enzimologia , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/virologia , Neuraminidase/genética , América do Norte/epidemiologia , Filogenia , Aves Domésticas , Vírus Reordenados
4.
J Virol ; 89(8): 4612-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673707

RESUMO

UNLABELLED: During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. IMPORTANCE: Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H10N8/genética , Modelos Moleculares , Proteínas Recombinantes/genética , Animais , Aves , Clonagem Molecular , Cristalização , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H10N8/metabolismo , Análise em Microsséries , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
5.
J Virol ; 89(5): 2801-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540377

RESUMO

UNLABELLED: In late 2011, an A(H3N8) influenza virus infection resulted in the deaths of 162 New England harbor seals. Virus sequence analysis and virus receptor binding studies highlighted potential markers responsible for mammalian adaptation and a mixed receptor binding preference (S. J. Anthony, J. A. St Leger, K. Pugliares, H. S. Ip, J. M. Chan, Z. W. Carpenter, I. Navarrete-Macias, M. Sanchez-Leon, J. T. Saliki, J. Pedersen, W. Karesh, P. Daszak, R. Rabadan, T. Rowles, W. I. Lipkin, MBio 3:e00166-00112, 2012, http://dx.doi.org/10.1128/mBio.00166-12). Here, we present a detailed structural and biochemical analysis of the surface antigens of the virus. Results obtained with recombinant proteins for both the hemagglutinin and neuraminidase indicate a true avian receptor binding preference. Although the detection of this virus in new species highlights an increased potential for cross-species transmission, our results indicate that the A(H3N8) virus currently poses a low risk to humans. IMPORTANCE: Cross-species transmission of zoonotic influenza viruses increases public health concerns. Here, we report a molecular and structural study of the major surface proteins from an A(H3N8) influenza virus isolated from New England harbor seals. The results improve our understanding of these viruses as they evolve and provide important information to aid ongoing risk assessment analyses as these zoonotic influenza viruses continue to circulate and adapt to new hosts.


Assuntos
Antígenos Virais/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N8/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/veterinária , Phoca/virologia , Proteínas Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos , Animais , Antígenos Virais/química , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H3N8/química , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Neuraminidase/química , New England , Infecções por Orthomyxoviridae/virologia , Polissacarídeos/análise , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas Virais/química
6.
J Virol ; 88(9): 4828-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522930

RESUMO

UNLABELLED: The noncovalent interactions that mediate trimerization of the influenza hemagglutinin (HA) are important determinants of its biological activities. Recent studies have demonstrated that mutations in the HA trimer interface affect the thermal and pH sensitivities of HA, suggesting a possible impact on vaccine stability (). We used size exclusion chromatography analysis of recombinant HA ectodomain to compare the differences among recombinant trimeric HA proteins from early 2009 pandemic H1N1 viruses, which dissociate to monomers, with those of more recent virus HAs that can be expressed as trimers. We analyzed differences among the HA sequences and identified intermolecular interactions mediated by the residue at position 374 (HA0 numbering) of the HA2 subdomain as critical for HA trimer stability. Crystallographic analyses of HA from the recent H1N1 virus A/Washington/5/2011 highlight the structural basis for this observed phenotype. It remains to be seen whether more recent viruses with this mutation will yield more stable vaccines in the future. IMPORTANCE: Hemagglutinins from the early 2009 H1N1 pandemic viruses are unable to maintain a trimeric complex when expressed in a recombinant system. However, HAs from 2010 and 2011 strains are more stable, and our work highlights that the improvement in stability can be attributed to an E374K substitution in the HA2 subunit of the stalk that emerged naturally in the circulating viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Influenza Humana/virologia , Cromatografia em Gel , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Análise de Sequência de DNA , Temperatura
7.
J Virol ; 87(22): 12433-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24027325

RESUMO

In March 2013, the Chinese Center for Disease Control and Prevention reported human infections with an H7N9 influenza virus, and by 20 July 2013, the numbers of laboratory-confirmed cases had climbed to 134, including 43 fatalities and 127 hospitalizations. The newly emerging H7N9 viruses constitute an obvious public health concern because of the apparent severity of this outbreak. Here we focus on the hemagglutinins (HAs) of these viruses and assess their receptor binding phenotype in relation to previous HAs studied. Glycan microarray and kinetic analyses of recombinant A(H7N9) HAs were performed to compare the receptor binding profile of wild-type receptor binding site variants at position 217, a residue analogous to one of two positions known to switch avian to human receptor preference in H2N2 and H3N2 viruses. Two recombinant A(H7N9) HAs were structurally characterized, and a mutational study of the receptor binding site was performed to analyze important residues that can affect receptor preference and affinity. Results highlight a weak human receptor preference of the H7N9 HAs, suggesting that these viruses require further adaptation in order to adapt fully to humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Mutação/genética , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
8.
Heliyon ; 6(6): e04068, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529072

RESUMO

Of the eighteen hemagglutinin (HA) subtypes (H1-H18) that have been identified in bats and aquatic birds, many HA subtypes have been structurally characterized. However, several subtypes (H8, H11 and H12) still require characterization. To better understand all of these HA subtypes at the molecular level, HA structures from an A(H4N6) (A/swine/Missouri/A01727926/2015), an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/546/1974), an A(H14N5) A/mallard/Gurjev/263/1982, and an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979 were determined by X-ray crystallography at 2.2Å, 2.3Å, 2.8Å, 3.0Å and 2.5Å resolution, respectively. The interactions between these viruses and host receptors were studied utilizing glycan-binding analyses with their recombinant HA. The data show that all avian HAs retain their strict binding preference to avian receptors, whereas swine H4 has a weak human receptor binding. The molecular characterization and structural analyses of the HA from these zoonotic influenza viruses not only provide a deeper appreciation and understanding of the structure of all HA subtypes, but also re-iterate why continuous global surveillance is needed.

9.
Virology ; 477: 18-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617824

RESUMO

A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans.


Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2/fisiologia , Receptores Virais/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica
10.
J Virol Methods ; 209: 121-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239367

RESUMO

The relative performance of ELISA using globular head domain (GH) and ectodomain hemagglutinins (HAs) as antigens to detect influenza A virus IgG antibody responses was assessed. Assay sensitivity and subtype cross-reactivity were evaluated using sera collected from recipients of monovalent H5N1 vaccine and A(H1N1)pdm09 virus-infected persons. Assay specificity was determined using collections of sera from either individuals unexposed to either H5N1 or A(H1N1)pdm09 viruses or exposed to H5N1 or A(H1N1)pdm09 viruses through vaccination or infection, respectively. ELISA using GH HA showed a similar degree of sensitivity, significantly higher specificity, and significantly lower subtype cross-reactivity compared to ELISA using ectodomain HA.


Assuntos
Anticorpos Antivirais/sangue , Testes Diagnósticos de Rotina/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A/imunologia , Influenza Humana/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Cabeça , Hemaglutininas , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
11.
PLoS One ; 8(9): e75209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086467

RESUMO

Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1), A/Hubei/1/2010 (Hubei10, clade 2.3.2.1) and A/Anhui/1/2005 (Anhui05, clade 2.3.4)]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.


Assuntos
Variação Antigênica/genética , Hemaglutininas Virais/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/genética , Modelos Moleculares , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Cristalização , Epitopos , Hemaglutininas Virais/genética , Humanos , Virus da Influenza A Subtipo H5N1/química , Filogenia , Conformação Proteica , Alinhamento de Sequência
12.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 679-84, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930619

RESUMO

Using a high degree of automation, the crystallography core at the Southeast Collaboratory for Structural Genomics (SECSG) has developed a high-throughput protein-to-structure pipeline. Various robots and automation procedures have been adopted and integrated into a pipeline that is capable of screening 40 proteins for crystallization and solving four protein structures per week. This pipeline is composed of three major units: crystallization, structure determination/validation and crystallomics. Coupled with the protein-production cores at SECSG, the protein-to-structure pipeline provides a two-tiered approach for protein production at SECSG. In tier 1, all protein samples supplied by the protein-production cores pass through the pipeline using standard crystallization screening and optimization procedures. The protein targets that failed to yield diffraction-quality crystals (resolution better than 3.0 A) become tier 2 or salvaging targets. The goal of tier 2 target salvaging, carried out by the crystallomics core, is to produce the target proteins with increased purity and homogeneity, which would render them more likely to yield well diffracting crystals. This is performed by alternative purification procedures and/or the introduction of chemical modifications to the proteins (such as tag removal, methylation, surface mutagenesis, selenomethionine labelling etc.). Details of the various procedures in the pipeline for protein crystallization, target salvaging, data collection/processing and high-throughput structure determination/validation, as well as some examples, are described.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Cristalização , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa