Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2307210, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38279606

RESUMO

Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.


Assuntos
Armadilhas Extracelulares , Staphylococcus aureus Resistente à Meticilina , Polímeros , Sepse , Animais , Sepse/tratamento farmacológico , Armadilhas Extracelulares/efeitos dos fármacos , Polímeros/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Neutrófilos/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Humanos
2.
Gene Ther ; 30(1-2): 18-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35790794

RESUMO

X-linked adrenoleukodystrophy (ALD) is a genetic disorder of the ABCD1 gene. We aimed to treat ALD via direct intracerebral injection of lentiviral ABCD1 (LV.ABCD1). Lentiviral vectors (LVs) were injected into the brain of wild type mice to access toxicities and biodistribution. Confocal microscopy illustrated supraphysiological ABCD1 expression surrounding the injection sites, and LVs were also detected in the opposite site of the unilaterally injected brain. In multi-site bilateral injections (4, 6, 8, and 9 sites), LV.ABCD1 transduced most brain regions including the cerebellum. Investigation of neuronal loss, astrogliosis and microglia activation did not detect abnormality. For efficacy evaluation, a novel ALD knockout (KO) mouse model was established by deleting exons 3 to 9 of the ABCD1 gene based on CRISPR/Cas9 gene editing. The KO mice showed behavioral deficit in open-field test (OFT) and reduced locomotor activities in rotarod test at 6 and 7 months of age, respectively. We treated 3-month-old KO mice with bilateral LV.ABCD1 injections into the external capsule and thalamus. ABCD1 expression was detected 15 days later, and the impaired motor ability was gradually alleviated. Our studies established an early onset ALD model and illustrated neurological improvement after LV.ABCD1 intracerebral injection without immunopathological toxicity.


Assuntos
Adrenoleucodistrofia , Animais , Camundongos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Camundongos Knockout , Terapia Genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo
3.
Mol Cancer ; 22(1): 3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617554

RESUMO

BACKGROUND: This study aimed to validate whether infusion of GD2-specific fourth-generation safety-designed chimeric antigen receptor (4SCAR)-T cells is safe and whether CAR-T cells exert anti-glioblastoma (GBM) activity. METHODS: A total of eight patients with GD2-positive GBM were enrolled and infused with autologous GD2-specific 4SCAR-T cells, either through intravenous administration alone or intravenous combined with intracavitary administration. RESULTS: 4SCAR-T cells expanded for 1-3 weeks and persisted at a low frequency in peripheral blood. Of the eight evaluable patients, four showed a partial response for 3 to 24 months, three had progressive disease for 6 to 23 months, and one had stable disease for 4 months after infusion. For the entire cohort, the median overall survival was 10 months from the infusion. GD2 antigen loss and infiltrated T cells were observed in the tumor resected after infusion. CONCLUSION: Both single and combined infusions of GD2-specific 4SCAR-T cells in targeting GBM were safe and well tolerated, with no severe adverse events. In addition, GD2-specific 4SCAR-T cells partially mediate antigen loss and activate immune responses in the tumor microenvironment. Validation of our findings in a larger prospective trial is warranted. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03170141 . Registered 30 May 2017.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/tratamento farmacológico , Imunoterapia Adotiva/efeitos adversos , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
4.
Mol Med ; 29(1): 74, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308845

RESUMO

BACKGROUND: Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS: To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS: To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS: The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.


Assuntos
Fator VIII , Hemofilia A , Humanos , Animais , Camundongos , Coagulação Sanguínea , Linhagem Celular , Terapia Genética , Camundongos Knockout
5.
J Virol ; 96(16): e0075522, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35914074

RESUMO

Primary effusion lymphoma (PEL) is a fatal B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Inducing KSHV lytic replication that causes the death of host cells is an attractive treatment approach for PE; however, combination therapy inhibiting viral production is frequently needed to improve its outcomes. We have previously shown that the KSHV lytic protein K-bZIP can SUMOylate histone lysine demethylase 4A (KDM4A) at lysine 471 (K471) and this SUMOylation is required for virus production upon KSHV reactivation. Here, we demonstrate that SUMOylation of KDM4A orchestrates PEL cell survival, a major challenge for the success of PEL treatment; and cell movement and angiogenesis, the cell functions contributing to PEL cell extravasation and dissemination. Furthermore, integrated ChIP-seq and RNA-seq analyses identified interleukin-10 (IL-10), an immunosuppressive cytokine, as a novel downstream target of KDM4A. We demonstrate that PEL-induced angiogenesis is dependent on IL-10. More importantly, single-cell RNA sequencing (scRNA-seq) analysis demonstrated that, at the late stage of KSHV reactivation, KDM4A determines the fates of PEL cells, as evidenced by two distinct cell populations; one with less apoptotic signaling expresses high levels of viral genes and the other is exactly opposite, while KDM4A-K417R-expressing cells contain only the apoptotic population with less viral gene expression. Consistently, KDM4A knockout significantly reduced cell viability and virus production in KSHV-reactivated PEL cells. Since inhibiting PEL extravasation and eradicating KSHV-infected PEL cells without increasing viral load provide a strong rationale for treating PEL, this study indicates targeting KDM4A as a promising therapeutic option for treating PEL. IMPORTANCE PEL is an aggressive and untreatable B-cell lymphoma caused by KSHV infection. Therefore, new therapeutic approaches for PEL need to be investigated. Since simultaneous induction of KSHV reactivation and apoptosis can directly kill PEL cells, they have been applied in the treatment of this hematologic malignancy and have made progress. Epigenetic therapy with histone deacetylase (HDAC) inhibitors has been proved to treat PEL. However, the antitumor efficacies of HDAC inhibitors are modest and new approaches are needed. Following our previous report showing that the histone lysine demethylase KDM4A and its SUMOylation are required for lytic reactivation of KSHV in PEL cells, we further investigated its cellular function. Here, we found that SUMOylation of KDM4A is required for the survival, movement, and angiogenesis of lytic KSHV-infected PEL cells. Together with our previous finding showing the importance of KDM4A SUMOylation in viral production, KDM4A can be a potential therapeutic target for PEL.


Assuntos
Herpesvirus Humano 8 , Histona Desmetilases com o Domínio Jumonji/metabolismo , Linfoma de Efusão Primária , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Histona Desmetilases/genética , Humanos , Interleucina-10/metabolismo , Ativação Viral , Replicação Viral
6.
PLoS Pathog ; 17(6): e1009670, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111227

RESUMO

KDM4A is a histone lysine demethylase that has been described as an oncogene in various types of cancer. The importance of KDM4A-mediated epigenetic regulation in tumorigenesis is just emerging. Here, by using Kaposi's sarcoma associated herpesvirus (KSHV) as a screening model, we identified 6 oncogenic virus-induced long non-coding RNAs (lncRNAs) with the potential to open chromatin. RNA immunoprecipitation revealed KSHV-induced KDM4A-associated transcript (KIKAT)/LINC01061 as a binding partner of KDM4A. Integrated ChIP-seq and RNA-seq analysis showed that the KIKAT/LINC01061 interaction may mediate relocalization of KDM4A from the transcription start site (TSS) of the AMOT promoter region and transactivation of AMOT, an angiostatin binding protein that regulates endothelial cell migration. Knockdown of AMOT diminished the migration ability of uninfected SLK and iSLK-BAC16 cells in response to KIKAT/LINC01061 overexpression. Thus, we conclude that KIKAT/LINC01061 triggered shifting of KDM4A as a potential epigenetic mechanism regulating gene transactivation. Dysregulation of KIKAT/LINC01061 expression may represent a novel pathological mechanism contributing to KDM4A oncogenicity.


Assuntos
Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Infecções por Herpesviridae/genética , Histona Desmetilases com o Domínio Jumonji/genética , RNA Longo não Codificante/genética , Ativação Viral/genética , Linhagem Celular , Cromatina , Herpesvirus Humano 8 , Humanos
7.
J Biol Chem ; 297(6): 101397, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774524

RESUMO

Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.


Assuntos
Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Lentivirus , Transdução Genética , Fator VIII/biossíntese , Fator VIII/genética , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/terapia , Humanos , Células K562
8.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430629

RESUMO

The COVID-19 pandemic has evolved to immune escape and threatened small children and the elderly with a higher severity and fatality of non-pulmonary diseases. These life-threatening non-pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) and multisystem inflammatory syndrome in children (MIS-C) are more prevalent in children. However, the mortality of multisystem inflammatory syndrome in adults (MIS-A) is much higher than that of MIS-C although the incidence of MIS-A is lower. Clarification of immunopathogenesis and genetic susceptibility of inflammatory non-pulmonary COVID-19 diseases would provide an appropriate guide for the crisis management and prevention of morbidity and fatality in the ongoing pandemic. This review article described three inflammatory non-pulmonary COVID-19 diseases including (1) meningoencephalitis (ME), (2) acute necrotizing encephalopathies (ANE), and (3) post-infectious multisystem inflammatory syndrome in children (MIS-C) and in adults (MIS-A). To prevent these life-threatening non-pulmonary COVID-19 diseases, hosts carrying susceptible genetic variants should receive prophylactic vaccines, avoid febrile respiratory tract infection, and institute immunomodulators and mitochondrial cocktails as early as possible.


Assuntos
Encefalopatias , COVID-19 , Adulto , Criança , Idoso , Humanos , Pandemias
9.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31723026

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining cancer with abnormal angiogenesis. The high incidence of KS in human immunodeficiency virus (HIV)-infected AIDS patients has been ascribed to an interaction between HIV type 1 (HIV-1) and KSHV, focusing on secretory proteins. The HIV-1 secreted protein HIV Tat has been found to synergize with KSHV lytic proteins to induce angiogenesis. However, the impact and underlying mechanisms of HIV Tat in KSHV-infected endothelial cells undergoing viral lytic reactivation remain unclear. Here, we identified LINC00313 as a novel KSHV reactivation-activated long noncoding RNA (lncRNA) that interacts with HIV Tat. We found that LINC00313 overexpression inhibits cell migration, invasion, and tube formation, and this suppressive effect was relieved by HIV Tat. In addition, LINC00313 bound to polycomb repressive complex 2 (PRC2) complex components, and this interaction was disrupted by HIV Tat, suggesting that LINC00313 may mediate transcription repression through recruitment of PRC2 and that HIV Tat alleviates repression through disruption of this association. This notion was further supported by bioinformatics analysis of transcriptome profiles in LINC00313 overexpression combined with HIV Tat treatment. Ingenuity Pathway Analysis (IPA) showed that LINC00313 overexpression negatively regulates cell movement and migration pathways, and enrichment of these pathways was absent in the presence of HIV Tat. Collectively, our results illustrate that an angiogenic repressive lncRNA, LINC00313, which is upregulated during KSHV reactivation, interacts with HIV Tat to promote endothelial cell motility. These results demonstrate that an lncRNA serves as a novel connector in HIV-KSHV interactions.IMPORTANCE KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection.


Assuntos
HIV-1/fisiologia , Herpesvirus Humano 8/fisiologia , RNA Longo não Codificante/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Coinfecção , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Infecções por HIV/virologia , Humanos , Complexo Repressor Polycomb 2 , Sarcoma de Kaposi/virologia , Ativação Transcricional , Regulação para Cima , Ativação Viral/genética , Replicação Viral
10.
Small ; 15(41): e1902641, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468672

RESUMO

It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.


Assuntos
Antivirais/farmacologia , Carbono/química , Curcumina/farmacologia , Pontos Quânticos/química , Animais , Encéfalo/virologia , Morte Celular/efeitos dos fármacos , Curcumina/química , Enterovirus/efeitos dos fármacos , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Masculino , Camundongos Endogâmicos ICR , Músculos/virologia , Fosforilação/efeitos dos fármacos , Pontos Quânticos/ultraestrutura , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Vírion/efeitos dos fármacos , Vírion/metabolismo , Difração de Raios X , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
12.
Mol Ther ; 25(4): 917-927, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28202390

RESUMO

Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.


Assuntos
Células da Medula Óssea/metabolismo , Engenharia Celular , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Terapia Genética , Vetores Genéticos/genética , Lentivirus/genética , Camundongos , Camundongos Knockout , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia , Superóxido Dismutase/deficiência
13.
Lab Invest ; 96(10): 1105-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27617404

RESUMO

Neurofibromas, which are benign Schwann cell tumors, are the hallmark feature in the autosomal dominant condition neurofibromatosis 1 (NF1) and are associated with biallelic loss of NF1 gene function. There is a need for effective therapies for neurofibromas, particularly the larger, plexiform neurofibromas. Tissue culture is an important tool for research. However, it is difficult to derive enriched human Schwann cell cultures, and most enter replicative senescence after 6-10 passages, impeding cell-based research in NF1. Through exogenous expression of human telomerase reverse transcriptase and murine cyclin-dependent kinase (mCdk4), normal (NF1 wild-type), neurofibroma-derived Schwann cells heterozygous for NF1 mutation, and neurofibroma-derived Schwann cells homozygous for NF1 mutation were immortalized, including some matched samples from the same NF1 patient. Initial experiments employed retroviral vectors, while subsequent work utilized lentiviral vectors carrying these genes because of improved efficiency. Expression of both transgenes was required for immortalization. Molecular and immunohistochemical analysis indicated that these cell lines are of Schwann cell lineage and have a range of phenotypes, many of which are consistent with their primary cultures. This is the first report of immortalization and detailed characterization of multiple human NF1 normal nerve and neurofibroma-derived Schwann cell lines, which will be highly useful research tools to study NF1 and other Schwann tumor biology and conditions.


Assuntos
Técnicas de Cultura de Células , Neurofibromatose 1 , Células de Schwann , Animais , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Humanos , Camundongos , Transplante de Neoplasias , Telomerase/genética
14.
Small ; 12(40): 5530-5537, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27578319

RESUMO

The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx ) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

15.
Pediatr Crit Care Med ; 17(2): e58-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26649939

RESUMO

OBJECTIVES: PET/CT with F-fluorodeoxyglucose can be used to image cellular metabolism and has been used for evaluating fever of unknown origin in adults. However, there are limited studies about the role of F-fluorodeoxyglucose PET/CT in evaluation of fever of unknown origin in critically ill children, especially those presenting with complicated underlying diseases under treatment. Here, we report our preliminary experience using F-fluorodeoxyglucose PET/CT in this specific group of patients. DESIGN: Retrospective observational study. SETTING: PICUs of a university hospital. PATIENTS: Nineteen critically ill children (mean age, 5.7 yr old) with complicated underlying diseases requiring intensive care support underwent F-fluorodeoxyglucose PET/CT to evaluate fever of unknown origin. The median hospitalized stay was 34 days (range, 15-235 d) and fever of at least 7 days (mean, 21.6 d; range, 7-52 d). The PET scan was advocated after all routine microbiology, and conventional imaging showed negative or inconclusive results. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The F-fluorodeoxyglucose PET/CT findings (blinded to the final clinical diagnosis) were compared with final histopathology, culture, serology results, or follow-up imaging. A final diagnosis was made in 16 patients (84.2%). F-fluorodeoxyglucose PET/CT accurately localized the source of fever in 14 patients, confers to a sensitivity of 87.5% (14 of 16; 95% CI, 0.604-0.978). A false-positive scan in a patient led to subsequent unnecessary investigations. Two false-negative F-fluorodeoxyglucose PET/CT images were later attributed to relapse of underlying disease in the bone marrow and renal abscesses, respectively. In the other two patients where F-fluorodeoxyglucose PET/CT also showed negative findings, fever subsided shortly thereafter without treatment. CONCLUSIONS: Our preliminary experience suggests that F-fluorodeoxyglucose PET/CT may be clinically beneficial in evaluating fever of unknown origin in children with complicated underlying diseases mandating intensive support in ICUs if usual investigative methods are unsuccessful. Further large prospective studies are needed to validate these findings.


Assuntos
Estado Terminal , Febre de Causa Desconhecida/diagnóstico por imagem , Fluordesoxiglucose F18/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Criança , Pré-Escolar , Comorbidade , Diagnóstico Diferencial , Feminino , Febre de Causa Desconhecida/complicações , Hospitais Universitários , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Tempo de Internação , Masculino , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
J Cell Sci ; 126(Pt 16): 3638-48, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23750005

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.


Assuntos
Hepatócitos/citologia , Células Secretoras de Insulina/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Metilação de DNA , Hepatócitos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Regiões Promotoras Genéticas , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/genética
17.
Immunol Cell Biol ; 93(5): 461-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25582338

RESUMO

Dendritic cells (DCs) are important innate and adaptive immune effectors, and have a key role in antigen presentation and T-cell activation. Different lineages of DCs can be developed from hematopoietic progenitors following cytokine signaling, and the various lineages of DCs display distinct morphology, phenotype and functions. There has been limited information on differential cytokine-mediated molecular signaling in DCs. Analyses of surface molecules by flow cytometry and quantitative RNA profiling revealed differences between DCs derived from interleukin-4 (IL-4) versus IL-15 signaling, yet both lineages of DCs exhibited similar levels of surface molecules key to immune activation. Functional assays confirmed that IL-15-derived DCs elicited greater antigen-specific, primary and secondary CD8 and CD4 T-cell responses than did IL-4-derived DCs. Importantly, IL-15 DCs secreted substantial amounts of proinflammatory cytokines, including IL-6, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNFα), which helped polarize a strong T-cell response. Assessment of signaling pathways revealed that IL-15 DCs exhibited a lower levels of activated signal transducer and activator of transcription 5 (STAT5), STAT6 and extracellular signal-regulated kinase 1/2 than IL-4 DCs, but after lipopolysaccharide (LPS)/TNFα treatment, the STAT3 and p38 mitogen-activated protein kinase (MAPK) activities were significantly enhanced in the IL-15 DCs. Surprisingly, contrary to the canonical IL-15-mediated STAT5 signaling pathway in lymphoid cells, IL-15 did not mediate a strong STAT5 or STAT3 activation in DCs. Further analysis using specific inhibitors to STAT3 and p38 MAPK pathways revealed that the STAT3 signaling, but not p38 MAPK signaling, contributed to IFN-γ production in DCs. Therefore, while IL-15 does not promote the STAT signaling in DCs, the increased STAT3 activity after LPS/TNFα treatment of the IL-15 DCs has a key role in their high IFN-γ effector activities.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interleucina-15/metabolismo , Fator de Transcrição STAT3/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interferon gama/metabolismo , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
18.
Langmuir ; 31(35): 9523-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305291

RESUMO

By coating a thin layer of metal, including gold and gold-palladium alloy, of different thickness on the deformed shape memory polymer (SMP) pillars, we manipulate the degree of recovery of the SMP pillars. Pillars of different tilting angles were obtained as a result of balancing the strain recovery energy of the SMP pillars that favor the original straight state and the elastic energy of the metal layers that prefer the bent state. With this selective coating of a metal layer on the tilted pillars, we report a unique anisotropic liquid spreading behavior, where the water droplet is fully pinned in the direction of pillar tilting but advances in the reverse direction. This phenomenon is explained by the interplay of the surface chemistry and topography.

19.
Nano Lett ; 14(5): 2443-7, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24783945

RESUMO

Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.


Assuntos
Grafite/química , Microscopia de Tunelamento , Molibdênio/química , Semicondutores , Nanoestruturas/química , Análise Espectral , Propriedades de Superfície
20.
Small ; 10(5): 989-97, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23956038

RESUMO

In this study, the scalable and one-step fabrication of single atomic-layer transistors is demonstrated by the selective fluorination of graphene using a low-damage CF4 plasma treatment, where the generated F-radicals preferentially fluorinated the graphene at low temperature (<200 °C) while defect formation was suppressed by screening out the effect of ion damage. The chemical structure of the C-F bonds is well correlated with their optical and electrical properties in fluorinated graphene, as determined by X-ray photoelectron spectroscopy, Raman spectroscopy, and optical and electrical characterizations. The electrical conductivity of the resultant fluorinated graphene (F-graphene) was demonstrated to be in the range between 1.6 kΩ/sq and 1 MΩ/sq by adjusting the stoichiometric ratio of C/F in the range between 27.4 and 5.6, respectively. Moreover, a unique heterojunction structure of semi-metal/semiconductor/insulator can be directly formed in a single layer of graphene using a one-step fluorination process by introducing a Au thin-film as a buffer layer. With this heterojunction structure, it would be possible to fabricate transistors in a single graphene film via a one-step fluorination process, in which pristine graphene, partial F-graphene, and highly F-graphene serve as the source/drain contacts, the channel, and the channel isolation in a transistor, respectively. The demonstrated graphene transistor exhibits an on-off ratio above 10, which is 3-fold higher than that of devices made from pristine graphene. This efficient transistor fabrication method produces electrical heterojunctions of graphene over a large area and with selective patterning, providing the potential for the integration of electronics down to the single atomic-layer scale.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa