Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 16669-16676, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221504

RESUMO

Cavity resonator grating filters (CRIGFs) integrated on lithium niobate on insulator (LNOI) with electrical tuning elements are reported. The resonance wavelength of the filters is in the 780 nm range. Integrated thermo-optical tuning range of 2.5 nm is measured using integrated resistors, whilst a 0.7 nm electro-optical tuning range using capacitive metallic pads is achieved with ±400V drive voltage.

2.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559938

RESUMO

Blast waves generated by energetic materials involve very fast time variations in the pressure. One important issue for blast wave metrology is the accurate measurement (typical precision in the range of ±5% or better) of the static overpressure peak. For most near field configurations, this measurement requires ultra-fast sensors with response times lower than a few microseconds. In this paper, we design, model, fabricate and characterize a new ultra-fast sensor using piezo-resistive gauges at the center of a miniaturized and rectangular silicon membrane. When a pressure step of 10 bar is applied to the membrane, the signal delivered to the sensor output presents dampened oscillations, with a resonant frequency of 20.6 MHz and quality factor of 24,700 ns after the arrival of the shock wave. After removing undesirable drifts that appear after 700 ns, we may expect the sensor to have a response time (at ±5%) of 1.2 µs. Consequently, the proposed pressure sensor could be advantageously used for the accurate measurement of static overpressure peaks in blast wave experiments.

3.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502802

RESUMO

This paper reports the design, fabrication and measured performance of a passive microelectromechanical transducer for the wireless monitoring of high irradiation doses in nuclear environments. The sensing device is composed of a polymer material (high-density polyethylene) sealed inside a cavity. Subjected to ionizing radiation, this material releases various gases, which increases the pressure inside the cavity and deflects a dielectric membrane. From the measurement of the deflection, the variation of the applied pressure can be estimated, and, in turn, the dose may be determined. The microelectromechanical structure can also be used to study and validate the radiolysis properties of the polymer through its gas emission yield factor. Measurement of the dielectric membrane deflection is performed here to validate on the one hand the required airtightness of the cavity exposed to doses about 4 MGy and on the other hand, the functionality of the fabricated dosimeter for doses up to 80 kGy. The selection of appropriate materials for the microelectromechanical device is discussed, and the outgassing properties of the selected high-density polyethylene are analysed. Moreover, the technological fabrication process of the transducer is detailed.


Assuntos
Dosímetros de Radiação , Transdutores , Monitorização Fisiológica , Polímeros
4.
Talanta ; 217: 121013, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498826

RESUMO

Electrohydrodynamic migration, which is based on hydrodynamic actuation with an opposing electrophoretic force, enables the separation of DNA molecules of 3-100 kbp in glass capillary within 1 h. Here, we wish to enhance these performances using microchip technologies. This study starts with the fabrication of microchips with uniform surfaces, as motivated by our observation that band splitting occurs in microchannels made out of heterogeneous materials such as glass and silicon. The resulting glass-adhesive-glass microchips feature the highest reported bonding strength of 11 MPa for such materials (115 kgf/cm2), a high lateral resolution of critical dimension 5 µm, and minimal auto-fluorescence. These devices enable us to report the separation of 13 DNA bands in the size range of 1-150 kbp in one experiment of 5 min, i.e. 13 times faster than with capillary. In turn, we observe that bands split during electrohydrodynamic migration in heterogeneous glass-silicon but not in homogeneous glass-adhesive-glass microchips. We suggest that this effect arises from differential Electro-Osmotic Flow (EOF) in between the upper and lower walls of heterogeneous channels, and provide evidence that this phenomenon of differential EOF causes band broadening in electrophoresis during microchip electrophoresis. We finally prove that our electrohydrodynamic separation compares very favorably to microchip technologies in terms of resolution length and features the broadest analytical range reported so far.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa