RESUMO
Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.
Assuntos
Corpos Enovelados/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Imagem Individual de Molécula/métodos , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/genética , Edição de Genes , Células HeLa , Humanos , Mutação , RNA/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismoRESUMO
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in vitro and in vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:
Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Deleção de Sequência , Telomerase/química , Telômero/genéticaRESUMO
Single-particle imaging and tracking can be combined with colocalization analysis to study the dynamic interactions between macromolecules in living cells. Indeed, single-particle tracking has been extensively used to study protein-DNA interactions and dynamics. Still, unbiased identification and quantification of binding events at specific genomic loci remains challenging. Herein, we describe CoPixie, a new software that identifies colocalization events between a theoretically unlimited number of imaging channels, including single-particle movies. CoPixie is an object-based colocalization algorithm that relies on both pixel and trajectory overlap to determine colocalization between molecules. We employed CoPixie with live-cell single-molecule imaging of telomerase and telomeres, to test the model that cancer-associated POT1 mutations facilitate telomere accessibility. We show that POT1 mutants Y223C, D224N or K90E increase telomere accessibility for telomerase interaction. However, unlike the POT1-D224N mutant, the POT1-Y223C and POT1-K90E mutations also increase the duration of long-lasting telomerase interactions at telomeres. Our data reveal that telomere elongation in cells expressing cancer-associated POT1 mutants arises from the dual impact of these mutations on telomere accessibility and telomerase retention at telomeres. CoPixie can be used to explore a variety of questions involving macromolecular interactions in living cells, including between proteins and nucleic acids, from multicolor single-particle tracks.
Assuntos
Algoritmos , Mutação , Complexo Shelterina , Imagem Individual de Molécula , Software , Telomerase , Proteínas de Ligação a Telômeros , Telômero , Telomerase/metabolismo , Telomerase/genética , Telômero/metabolismo , Telômero/genética , Humanos , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Complexo Shelterina/metabolismo , Imagem Individual de Molécula/métodos , Ligação ProteicaRESUMO
Messenger RNA (mRNA) localization is an important mechanism controlling local protein synthesis. In budding yeast, asymmetric localization of transcripts such as ASH1 mRNA to the bud tip depends on the She2 RNA-binding protein. She2 assembles as a tetramer to bind RNA, but the regulation of this process as part of the mRNA locasome is still unclear. Here, we performed a phosphoproteomic analysis of She2 in vivo and identified new phosphosites, several of which are located at the dimerization or tetramerization interfaces of She2. Remarkably, phosphomimetic mutations at these residues disrupt the capacity of She2 to promote Ash1 asymmetric accumulation. A detailed analysis of one of these residues, T109, shows that a T109D mutation inhibits She2 oligomerization and its interaction with She3 and the importin-α Srp1. She2 proteins harboring the T109D mutation also display reduced expression. More importantly, this phosphomimetic mutation strongly impairs the capacity of She2 to bind RNA and disrupts ASH1 mRNA localization. These results demonstrate that the control of She2 oligomerization by phosphorylation constitutes an important regulatory step in the mRNA localization pathway.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosforilação , RNA/metabolismoRESUMO
Elongation of a short telomere depends on the action of multiple telomerase molecules, which are visible as telomerase RNA foci or clusters associated with telomeres in yeast and mammalian cells. How several telomerase molecules act on a single short telomere is unknown. Herein, we report that the telomeric noncoding RNA TERRA is involved in the nucleation of telomerase molecules into clusters prior to their recruitment at a short telomere. We find that telomere shortening induces TERRA expression, leading to the accumulation of TERRA molecules into a nuclear focus. Simultaneous time-lapse imaging of telomerase RNA and TERRA reveals spontaneous events of telomerase nucleation on TERRA foci in early S phase, generating TERRA-telomerase clusters. This cluster is subsequently recruited to the short telomere from which TERRA transcripts originate during S phase. We propose that telomere shortening induces noncoding RNA expression to coordinate the recruitment and activity of telomerase molecules at short telomeres.
Assuntos
RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Telomerase/genética , Encurtamento do Telômero/genética , Replicação do DNA/genética , Hibridização in Situ Fluorescente , RNA não Traduzido/metabolismo , RNA não Traduzido/ultraestrutura , Fase S/genética , Telomerase/metabolismo , Telômero/genética , Telômero/ultraestruturaRESUMO
The telomerase, which is composed of both protein and RNA, maintains genome stability by replenishing telomeric repeats at the ends of chromosomes. Here, we use live-cell imaging to follow yeast telomerase RNA dynamics and recruitment to telomeres in single cells. Tracking of single telomerase particles revealed a diffusive behavior and transient association with telomeres in G1 and G2 phases of the cell cycle. Interestingly, concurrent with telomere elongation in late S phase, a subset of telomerase enzyme clusters and stably associates with few telomeres. Our data show that this clustering represents elongating telomerase and it depends on regulators of telomerase at telomeres (MRX, Tel1, Rif1/2, and Cdc13). Furthermore, the assay revealed premature telomere elongation in G1 in a rif1/2 strains, suggesting that Rif1/2 act as cell-cycle dependent negative regulators of telomerase. We propose that telomere elongation is organized around a local and transient accumulation of several telomerases on a few telomeres.
Assuntos
RNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Telômero/metabolismo , Ciclo Celular , Sobrevivência Celular , Microscopia Confocal , RNA/análise , Saccharomyces cerevisiae/metabolismo , Telomerase/análise , Telômero/química , TermodinâmicaRESUMO
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/genética , Transcrição Gênica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sumoilação/genética , Proteínas de Ligação a Telômeros/genética , CoesinasRESUMO
Telomeres are maintained in a heterochromatic state that represses transcription of subtelomeric genes, a phenomenon known as telomere position effect. Nevertheless, telomeric DNA is actively transcribed, leading to the synthesis of telomeric repeat-containing noncoding RNA or TERRA. This nuclear noncoding RNA has been proposed to play important roles at telomeres, regulating their silencing, capping, repair and elongation by telomerase. In the budding yeast Saccharomyces cerevisiae, TERRA accumulation is repressed by telomeric silencing and the Rat1 exonuclease. On the other hand, telomere shortening promotes expression of TERRA. So far, little is known about the biological processes that induce TERRA expression in yeast. Understanding the dynamics of TERRA expression and localization is essential to define its function in telomere biology. Here, we aim to study the dynamics of TERRA expression during yeast cell growth. Using live-cell imaging, RNA-FISH and quantitative RT-PCR, we show that TERRA expression is induced as yeast cells undergo diauxic shift, a lag phase during which yeast cells switch their metabolism from anaerobic fermentation to oxidative respiration. This induction is transient as TERRA levels decrease during post-diauxic shift. The increased expression of TERRA is not due to the shortening of telomeres or increased stability of this transcript. Surprisingly, this induction is coincident with a cytoplasmic accumulation of TERRA molecules. Our results suggest that TERRA transcripts may play extranuclear functions with important implications in telomere biology and add a novel layer of complexity in the interplay between telomere biology, metabolism and stress response.
Assuntos
RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Telômero/genética , Transporte Biológico , Divisão Celular , Citoplasma/metabolismo , Hibridização in Situ Fluorescente , RNA Fúngico/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Transcrição GênicaRESUMO
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Telômero/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Microscopia de Fluorescência , Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Telômero/patologiaRESUMO
Single molecule RNA imaging using fluorescent in situ hybridization (FISH) can provide quantitative information on mRNA abundance and localization in a single cell. There is now a growing interest in screening for modifiers of RNA abundance and/or localization. For instance, microsatellite expansion within RNA can lead to toxic gain-of-function via mislocalization of these transcripts into RNA aggregate and sequestration of RNA-binding proteins. Screening for inhibitors of these RNA aggregate can be performed by high-throughput RNA FISH. Here we describe detailed methods to perform single molecule RNA FISH in multiwell plates for high-content screening (HCS) microscopy. We include protocols adapted for HCS with either standard RNA FISH with fluorescent oligonucleotide probes or the recent single molecule inexpensive FISH (smiFISH). Recommendations for success in HCS microscopy with high magnification objectives are discussed.
Assuntos
Hibridização in Situ Fluorescente/métodos , Mioblastos/fisiologia , RNA Mensageiro/genética , RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/isolamento & purificação , RNA Mensageiro/isolamento & purificaçãoRESUMO
In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs.
Assuntos
Imagem Molecular/métodos , RNA Fúngico/genética , RNA não Traduzido/genética , RNA/genética , Saccharomyces cerevisiae/genética , Telomerase/genética , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Pre-mRNA processing is coupled with transcription. It is still unclear if the transcription machinery can also directly affect the cytoplasmic fate of a transcript, such as its intracellular localization. In yeast, the RNA-binding protein She2p binds several mRNAs and targets them for localization at the bud. Here we report that She2p is recruited cotranscriptionally to the nascent bud-localized ASH1, IST2, and EAR1 mRNA. She2p interacts in vivo with the elongating forms of RNA polymerase II (pol II) via the transcription elongation factor Spt4-Spt5. Mutations in either SPT4 or SPT5 reduce the cotranscriptional recruitment of She2p on the ASH1 gene, disrupt the proper localization of ASH1 mRNA at the bud tip, and affect Ash1p sorting to the daughter cell nucleus. We propose that She2p is recruited by the RNA pol II machinery prior to its transfer to nascent bud-localized mRNAs. Indeed, She2p is present with RNA pol II on genes coding for localized or nonlocalized transcripts, but is associated with nascent mRNA only on genes coding for bud-localized transcripts. Moreover, a She2p mutant defective in RNA binding still associates with RNA pol II transcribed genes. This study uncovers a novel mechanism for the cotranscriptional assembly of mRNP complexes primed for localization in the cytoplasm.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genéticaRESUMO
AIM: Recent evidence shows that localization of mRNAs and their protein products at cellular protrusions plays a decisive function in the metastasis of cancer cells. The aim of this study was to identify the variety of proteins encoded by protrusion-localized mRNAs and their roles in the metastasis and invasion of liver cancer cells. METHODS: Highly metastatic hepatocellular carcinoma cell line HCCLM3 and non-metastatic hepatocellular carcinoma cell line SMMC-7721 were examined. Cell protrusions (Ps) were separated from cell bodies (CB) using a Boyden chamber assay; total mRNA population in CB and Ps fractions was analyzed using high-throughput direct RNA sequencing. The localization of STAT3 mRNA and protein at Ps was confirmed using RT-qPCR, RNA FISH, and immunofluorescence assays. Cell migration capacity and invasiveness of HCCLM3 cells were evaluated using MTT, wound healing migration and in vitro invasion assays. The interaction between Stat3 and growth factor receptors was explored with co-immunoprecipitation assays. RESULTS: In HCCLM3 cells, 793 mRNAs were identified as being localized in the Ps fraction according to a cut-off value (Ps/CB ratio) >1.6. The Ps-localized mRNAs could be divided into 4 functional groups, and were all closely related to the invasive and metastatic properties. STAT3 mRNA accumulated in the Ps of HCCLM3 cells compared with non-metastatic SMMC-7721 cells. Treatment of HCCLM3 cells with siRNAs against STAT3 mRNA drastically decreased the cell migration and invasion. Moreover, Ps-localized Stat3 was found to interact with pseudopod-enriched platelet-derived growth factor receptor tyrosine kinase (PDGFRTK) in a growth factor-dependent manner. CONCLUSION: This study reveals STAT3 mRNA localization at the Ps of metastatic hepatocellular carcinoma HCCLM3 cells by combining application of genome-wide and gene specific description and functional analysis.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Fator de Transcrição STAT3/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologiaRESUMO
Messenger RNA (mRNA) localization is coupled to the translational repression of transcripts during their transport. It is still unknown if this coupling depends on physical interactions between translational control and mRNA localization machineries, and how these interactions are established at the molecular level. In yeast, localization of transcripts like ASH1 to the bud depends on the RNA-binding protein She2. During its transport, ASH1 mRNA translation is repressed by Puf6. Herein, we report that She2 recruits Puf6 on ASH1 co-transcriptionally. The recruitment of Puf6 depends on prior co-transcriptional loading of Loc1, an exclusively nuclear protein. These proteins form a ternary complex, in which Loc1 bridges Puf6 to She2, that binds the ASH1 3'UTR. Using a genome-wide ChIP-chip approach, we identified over 40 novel targets of Puf6, including several bud-localized mRNAs. Interestingly, the co-transcriptional recruitment of Puf6 on genes coding for these bud-localized mRNAs is also She2- and Loc1-dependent. Our results suggest a coordinated assembly of localization and translational control machineries on localized mRNAs during transcription, and underline the importance of co-transcriptional events in establishing the cytoplasmic fate of mRNAs.
Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Mensageiro/análise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Assuntos
Telomerase , Telômero , Telomerase/metabolismo , Telomerase/genética , Humanos , Telômero/metabolismo , Telômero/genética , Homeostase do Telômero , Células HeLa , RNA/metabolismo , RNA/genética , Transcrição Gênica , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Ciclo Celular/genética , Cromossomos Humanos/metabolismo , Cromossomos Humanos/genética , Proteínas de Ligação a DNA , Fatores de TranscriçãoRESUMO
Transcripts containing expanded CNG repeats, which are found in several neuromuscular diseases, are not exported from the nucleus and aggregate as ribonuclear inclusions by an unknown mechanism. Using the MS2-GFP system, which tethers fluorescent proteins to a specific mRNA, we followed the dynamics of single CUG-repeat transcripts and RNA aggregation in living cells. Single transcripts with 145 CUG repeats from the dystrophia myotonica-protein kinase (DMPK) gene had reduced diffusion kinetics compared with transcripts containing only five CUG repeats. Fluorescence recovery after photobleaching (FRAP) experiments showed that CUG-repeat RNAs display a stochastic aggregation behaviour, because individual RNA foci formed at different rates and displayed different recoveries. Spontaneous clustering of CUG-repeat RNAs was also observed, confirming the stochastic aggregation revealed by FRAP. The splicing factor Mbnl1 colocalized with individual CUG-repeat transcripts and its aggregation with RNA foci displayed the same stochastic behaviour as CUG-repeat mRNAs. Moreover, depletion of Mbnl1 by RNAi resulted in decreased aggregation of CUG-repeat transcripts after FRAP, supporting a direct role for Mbnl1 in CUG-rich RNA foci formation. Our data reveal that nuclear CUG-repeat RNA aggregates are labile, constantly forming and disaggregating structures, and that the Mbnl1 splicing factor is directly involved in the aggregation process.
Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Repetições de Trinucleotídeos , Animais , Recuperação de Fluorescência Após Fotodegradação/métodos , Perfilação da Expressão Gênica , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Processos Estocásticos , Transcrição Gênica , Expansão das Repetições de TrinucleotídeosRESUMO
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Assuntos
Citoplasma/metabolismo , RNA Mensageiro/análise , Transporte Ativo do Núcleo Celular , Animais , Humanos , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de SinaisRESUMO
The yeast telomerase holoenzyme, which adds telomeric repeats at the chromosome ends, is composed of the TLC1 RNA and the associated proteins Est1, Est2 and Est3. To study the biogenesis of telomerase in endogenous conditions, we performed fluorescent in situ hybridization on the native TLC1 RNA. We found that the telomerase RNA colocalizes with telomeres in G1- to S-phase cells. Strains lacking any one of the Est proteins accumulate TLC1 RNA in their cytoplasm, indicating that a critical stage of telomerase biogenesis could take place outside of the nucleus. We were able to demonstrate that endogenous TLC1 RNA shuttles between the nucleus and the cytoplasm, in association with the Crm1p exportin and the nuclear importins Mtr10p-Kap122p. Furthermore, nuclear retention of the TLC1 RNA is impaired in the absence of yKu70p, Tel1p or the MRX complex, which recruit telomerase to telomeres. Altogether, our results reveal that the nucleo-cytoplasmic trafficking of the TLC1 RNA is an important step in telomere homeostasis, and link telomerase biogenesis to its recruitment to telomeres.
Assuntos
RNA Fúngico/metabolismo , Telomerase/metabolismo , Hibridização in Situ Fluorescente , Carioferinas/metabolismo , Transporte de RNA , Receptores Citoplasmáticos e Nucleares/metabolismo , Telômero/metabolismo , Leveduras , Proteína Exportina 1RESUMO
Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of "type II" hammerheads, and our findings reveal that this permuted form occurs in bacteria as frequently as type I and III architectures. We also identified a commonly occurring pseudoknot that forms a tertiary interaction critical for high-speed ribozyme activity. Genomic contexts of many hammerhead ribozymes indicate that they perform biological functions different from their known role in generating unit-length RNA transcripts of multimeric viroid and satellite virus genomes. In rare instances, nucleotide variation occurs at positions within the catalytic core that are otherwise strictly conserved, suggesting that core mutations are occasionally tolerated or preferred.
Assuntos
Filogenia , RNA Catalítico/química , RNA Catalítico/genética , Agrobacterium tumefaciens/genética , Animais , Azorhizobium caulinodans/genética , Sequência de Bases , Clostridium/genética , Biologia Computacional , Genoma , Humanos , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , SuínosRESUMO
The stable linearity of eukaryotic chromosomes depends on special characteristics of their ends, the telomeres. Accurate telomere function in turn requires a sustained presence of repeated DNA elements, which are maintained by the enzyme telomerase. The telomerase holoenzyme is composed of both protein and RNA, and its functions rely on proper expression, maturation, trafficking and assembly of these components. Conflicting models for the recruitment of telomerase at telomeres have been proposed; one suggests a local activation of telomerase at short telomeres, while the other proposes that telomerase is recruited only at short telomeres. To discriminate between these models and investigate the cell cycle-dependent regulation of telomerase in living cells, a GFP reporter system to visualize the yeast telomerase RNA has been recently developed. This assay shed new light on the mechanism of recruitment of telomerase to telomeres, and it uncovered a hitherto unrecognized mechanism for restricting telomerase access to telomeres.