Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 308(2): 290-296, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29325882

RESUMO

Ventilator-associated pneumonia (VAP) remains the most frequent life-threatening nosocomial infection. Enterobacteriaceae including Escherichia coli are increasingly involved. If a cumulative effect of pathogenicity islands (PAIs) has been shown for E. coli virulence in urinary tract or systemic infections, very little is known regarding pathophysiology of E. coli pneumonia. This study aimed to determine the role of each of the 7 PAIs present in pathogenic E. coli strain 536 in pneumonia pathophysiology. We used mutant strains to screen pathophysiological role of PAI in a rat pneumonia model. We also test individual gene mutants within PAI identified to be involved in pneumonia pathogenesis. Finally, we determined the prevalence of these genes of interest in E. coli isolates from feces and airways of ventilated patients. Only PAIs I and III were significantly associated with rat pneumonia pathogenicity. Only the antigen-43 (Ag43) gene in PAI III was significantly associated with bacterial pathogenicity. The prevalence of tested genes in fecal and airway isolates of ventilated patients did not differ between isolates. In contrast, genes encoding Ag43, the F17-fimbriae subunits, HmuR and SepA were more prevalent in VAP isolates with statistical significance for hmuR when compared to airway colonizing isolates. The E. coli PAIs involved in lung pathogenicity differed from those involved in urinary tract and bloodstream infections. Overall, extraintestinal E. coli virulence seems to rely on a combination of numerous virulence genes that have a cumulative effect depending on the infection site.


Assuntos
Infecções por Escherichia coli/fisiopatologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Ilhas Genômicas/genética , Pneumonia Bacteriana/fisiopatologia , Pneumonia Associada à Ventilação Mecânica/fisiopatologia , Adesinas Bacterianas/genética , Animais , Infecção Hospitalar/microbiologia , Modelos Animais de Doenças , Proteínas de Escherichia coli/genética , Humanos , Unidades de Terapia Intensiva , Masculino , Pneumonia Bacteriana/microbiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Ratos , Ratos Wistar , Infecções Urinárias/microbiologia , Infecções Urinárias/fisiopatologia , Virulência/genética
2.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28411228

RESUMO

To get insights into the temporal pattern of commensal Escherichia coli populations, we sampled the feces of four healthy cows from the same herd in the Hwange District of Zimbabwe daily over 25 days. The cows had not received antibiotic treatment during the previous 3 months. We performed viable E. coli counts and characterized the 326 isolates originating from the 98 stool samples at a clonal level, screened them for stx and eae genes, and tested them for their antibiotic susceptibilities. We observed that E. coli counts and dominant clones were different among cows, and very few clones were shared. No clone was shared by three or four cows. Clone richness and evenness were not different between cows. Within each host, the variability in the E. coli count was evidenced between days, and no clone was found to be dominant during the entire sampling period, suggesting the existence of clonal interference. Dominant clones tended to persist longer than subdominant ones and were mainly from phylogenetic groups A and B1. Five E. coli clones were found to contain both the stx1 and stx2 genes, representing 6.3% of the studied isolates. All cows harbored at least one Shiga toxin-producing E. coli (STEC) strain. Resistance to tetracycline, penicillins, trimethoprim, and sulfonamides was rare and observed in three clones that were shed at low levels in two cows. This study highlights the fact that the commensal E. coli population, including the STEC population, is host specific, is highly dynamic over a short time frame, and rarely carries antibiotic resistance determinants in the absence of antibiotic treatment.IMPORTANCE The literature about the dynamics of commensal Escherichia coli populations is very scarce. Over 25 days, we followed the total E. coli counts daily and characterized the sampled clones in the feces of four cows from the same herd living in the Hwange District of Zimbabwe. This study deals with the day-to-day dynamics of both quantitative and qualitative aspects of E. coli commensal populations, with a focus on both Shiga toxin-producing E. coli and antibiotic-resistant E. coli strains. We show that the structure of these commensal populations was highly specific to the host, even though the cows ate and roamed together, and was highly dynamic between days. Such data are of importance to understand the ecological forces that drive the dynamics of the emergence of E. coli clones of particular interest within the gastrointestinal tract and their transmission between hosts.


Assuntos
Bovinos/microbiologia , Escherichia coli/fisiologia , Animais , Bovinos/fisiologia , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fezes/microbiologia , Filogenia , Toxina Shiga/genética , Toxina Shiga/metabolismo , Simbiose , Zimbábue
3.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408235

RESUMO

Adaptive processes in chronic bacterial infections are well described, but much less is known about the processes at play during acute infections. Here, by sequencing seven randomly selected isolates per patient, we analyzed Escherichia coli populations from three acute extraintestinal infections in adults (meningitis, pyelonephritis, and peritonitis), in which a high-mutation-rate isolate or mutator isolate was found. The isolates of single patients displayed between a few dozen and more than 200 independent mutations, with up to half being specific to the mutator isolate. Multiple signs of positive selection were evidenced: a high ratio of nonsynonymous to synonymous mutations (Ka /Ks ratio) and strong mutational convergence within and between patients, some of them at loci well known for their adaptive potential, such as rpoS, rbsR, fimH, and fliC For all patients, the mutator isolate was likely due to a large deletion of a methyl-directed mismatch repair gene, and in two instances, the deletion extended to genes involved in some genetic convergence, suggesting potential coselection. Intrinsic extraintestinal virulence assessed in a mouse model of sepsis showed variable patterns of virulence ranging from non-mouse killer to mouse killer for the isolates from single patients. However, genomic signature and gene inactivation experiments did not establish a link between a single gene and the capacity to kill mice, highlighting the complex and multifactorial nature of the virulence. Altogether, these data indicate that E. coli isolates are adapting under strong selective pressure when colonizing an extraintestinal site.IMPORTANCE Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. High genomic diversity was observed in the patient isolates, with an excess of nonsynonymous mutations, and the comparison within and between different infections showed patterns of convergence at the gene level, both constituting strong signs of adaptation. The genes targeted were coding mostly for proteins involved in global regulation, metabolism, and adhesion/motility. Moreover, virulence assessed in a mouse model of sepsis was variable among the isolates of single patients, but this difference was left unexplained at the molecular level. This work gives us clues about the E. coli lifestyle transition between commensalism and pathogenicity.


Assuntos
Adaptação Fisiológica/genética , Infecções por Escherichia coli/microbiologia , Evolução Molecular , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Genoma Bacteriano , Doença Aguda , Animais , Infecções por Escherichia coli/classificação , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Feminino , Genótipo , Humanos , Meningite/microbiologia , Camundongos , Mutação , Peritonite/microbiologia , Pielonefrite/microbiologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa