Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell Environ ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757448

RESUMO

Global climate change is affecting plant photosynthesis and transpiration processes, as well as increasing weather extremes impacting socio-political and environmental events and decisions for decades to come. One major research challenge in plant biology and ecology is the interaction of photosynthesis with the environment. Stomata control plant gas exchange and their evolution was a crucial innovation that facilitated the earliest land plants to colonize terrestrial environments. Stomata couple homoiohydry, together with cuticles, intercellular gas space, with the endohydric water-conducting system, enabling plants to adapt and diversify across the planet. Plants control stomatal movement in response to environmental change through regulating guard cell turgor mediated by membrane transporters and signaling transduction. However, the origin, evolution, and active control of stomata remain controversial topics. We first review stomatal evolution and diversity, providing fossil and phylogenetic evidence of their origins. We summarize functional evolution of guard cell membrane transporters in the context of climate changes and environmental stresses. Our analyses show that the core signaling elements of stomatal movement are more ancient than stomata, while genes involved in stomatal development co-evolved de novo with the earliest stomata. These results suggest that novel stomatal development-specific genes were acquired during plant evolution, whereas genes regulating stomatal movement, especially cell signaling pathways, were inherited ancestrally and co-opted by dynamic functional differentiation. These two processes reflect the different adaptation strategies during land plant evolution.

2.
J Environ Manage ; 358: 120895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626487

RESUMO

Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.


Assuntos
Carbono , Compostagem , Nitrogênio , Streptomyces , Streptomyces/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Esterco , Bacillus/metabolismo , Bactérias/metabolismo
3.
J Integr Plant Biol ; 66(5): 897-908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506424

RESUMO

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Lipoxigenase/metabolismo , Lipoxigenase/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Lipoxigenases
4.
New Phytol ; 237(2): 497-514, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266957

RESUMO

The considerable drought tolerance of wild cereal crop progenitors has diminished during domestication in the pursuit of higher productivity. Regaining this trait in cereal crops is essential for global food security but requires novel genetic insight. Here, we assessed the molecular evidence for natural variation of drought tolerance in wild barley (Hordeum spontaneum), wild emmer wheat (Triticum dicoccoides), and Brachypodium species collected from dry and moist habitats at Evolution Canyon, Israel (ECI). We report that prevailing moist vs dry conditions have differentially shaped the stomatal and photosynthetic traits of these wild cereals in their respective habitats. We present the genomic and transcriptomic evidence accounting for differences, including co-expression gene modules, correlated with physiological traits, and selective sweeps, driven by the xeric site conditions on the African Slope (AS) at ECI. Co-expression gene module 'circadian rhythm' was linked to significant drought-induced delay in flowering time in Brachypodium stacei genotypes. African Slope-specific differentially expressed genes are important in barley drought tolerance, verified by silencing Disease-Related Nonspecific Lipid Transfer 1 (DRN1), Nonphotochemical Quenching 4 (NPQ4), and Brassinosteroid-Responsive Ring-H1 (BRH1). Our results provide new genetic information for the breeding of resilient wheat and barley in a changing global climate with increasingly frequent drought events.


Assuntos
Grão Comestível , Hordeum , Resistência à Seca , Melhoramento Vegetal , Produtos Agrícolas/genética , Secas , Hordeum/genética
5.
Plant Cell Physiol ; 63(11): 1679-1694, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993973

RESUMO

Stomata play a fundamental role in modulating the exchange of gases between plants and the atmosphere. These microscopic structures form in high numbers on the leaf epidermis and are also present on flowers. Although leaf stomata are well studied, little attention has been paid to the development or function of floral stomata. Here, we characterize in detail the spatial distribution and development of the floral stomata of the indica rice variety IR64. We show that stomatal complexes are present at low density on specific areas of the lemma, palea and anthers and are morphologically different compared to stomata found on leaves. We reveal that in the bract-like organs, stomatal development follows the same cell lineage transitions as in rice leaves and demonstrate that the overexpression of the stomatal development regulators OsEPFL9-1 and OsEPF1 leads to dramatic changes in stomatal density in rice floral organs, producing lemma with approximately twice as many stomata (OsEPFL9-1_oe) or lemma where stomata are practically absent (OsEPF1_oe). Transcriptomic analysis of developing florets also indicates that the cellular transitions during the development of floral stomata are regulated by the same genetic network used in rice leaves. Finally, although we were unable to detect an impact on plant reproduction linked to changes in the density of floral stomata, we report alterations in global gene expression in lines overexpressing OsEPF1 and discuss how our results reflect on the possible role(s) of floral stomata.


Assuntos
Oryza , Oryza/metabolismo , Redes Reguladoras de Genes , Flores , Folhas de Planta/genética , Expressão Gênica , Estômatos de Plantas/genética , Regulação da Expressão Gênica de Plantas
6.
J Environ Manage ; 324: 116377, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36352711

RESUMO

Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.


Assuntos
Compostagem , Micobioma , Animais , Feminino , Bovinos , Esterco/microbiologia , Solo/química , Bactérias/genética
7.
Arch Microbiol ; 203(10): 6303-6314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652507

RESUMO

Truffles contribute to crucial soil systems dynamics, being involved in plentiful ecological functions important for ecosystems. Despite this, the interactions between truffles and their surrounding mycobiome remain unknown. Here, we investigate soil mycobiome differences between two truffle species, Tuber indicum (Ti) and Tuber pseudohimalayense (Tp), and their relative influence on surrounding soil mycobiota. Using traditional chemical analysis and ITS Illumina sequencing, we compared soil nutrients and the mycobiota, respectively, in soil, gleba, and peridium of the two truffle species inhabiting the same Pinus armandii forest in southwestern China. Tp soil was more acidic (pH 6.42) and had a higher nutrient content (total C, N content) than Ti soil (pH 6.62). Fungal richness and diversity of fruiting bodies (ascomata) and surrounding soils were significantly higher in Tp than in Ti. Truffle species recruited unique soil mycobiota around their ascomata: in Ti soil, fungal taxa, including Suillus, Alternaria, Phacidium, Mycosphaerella, Halokirschsteiniothelia, and Pseudogymnoascus, were abundant, while in Tp soil species of Melanophyllum, Inocybe, Rhizopogon, Rhacidium, and Lecanicillium showed higher abundances. Three dissimilarity tests, including adonis, anosim, and MRPP, showed that differences in fungal community structure between the two truffle species and their surrounding soils were stronger in Tp than in Ti, and these differences extended to truffle tissues (peridium and gleba). Redundancy analysis (RDA) further demonstrated that correlations between soil fungal taxa and soil properties changed from negative (Tp) to positive (Ti) and shifted from a moisture-driven (Tp) to a total N-driven (Ti) relationship. Overall, our results shed light on the influence that truffles have on their surrounding soil mycobiome. However, further studies are required on a broader range of truffle species in different soil conditions in order to determine causal relationships between truffles and their soil mycobiome.


Assuntos
Ascomicetos , Micorrizas , Pinus , Ascomicetos/genética , Ecossistema , Florestas , Solo , Microbiologia do Solo
8.
Development ; 143(18): 3306-14, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407102

RESUMO

The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system.


Assuntos
Bryopsida/metabolismo , Estômatos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
New Phytol ; 221(1): 371-384, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30043395

RESUMO

Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar 'IR64' to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.


Assuntos
Secas , Oryza/fisiologia , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Oryza/citologia , Oryza/genética , Melhoramento Vegetal , Folhas de Planta/citologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Água/metabolismo
11.
Plant Physiol ; 174(2): 624-638, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28356502

RESUMO

The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants.


Assuntos
Evolução Biológica , Estômatos de Plantas/fisiologia , Arabidopsis/fisiologia , Briófitas/fisiologia , Bryopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Estatísticos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Cell Mol Life Sci ; 74(17): 3119-3147, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643166

RESUMO

Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Criptocromos/química , Criptocromos/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/química , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Plant Physiol ; 170(3): 1655-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813793

RESUMO

Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective.


Assuntos
Clorofila/metabolismo , Perfilação da Expressão Gênica/métodos , Oryza/genética , Fotossíntese/genética , Folhas de Planta/genética , Clorofila/química , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/ultraestrutura , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Fatores de Tempo
14.
Plant Cell Rep ; 36(5): 745-757, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349358

RESUMO

KEY MESSAGE: CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
16.
New Phytol ; 205(1): 390-401, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195943

RESUMO

The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function.


Assuntos
Evolução Biológica , Biopolímeros/biossíntese , Vias Biossintéticas , Carotenoides/biossíntese , Infertilidade das Plantas , Pólen/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Esporos/ultraestrutura
17.
New Phytol ; 202(2): 376-391, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24611444

RESUMO

Stomata are produced by a controlled series of epidermal cell divisions. The molecular underpinnings of this process are becoming well understood, but mechanisms that determine plasticity of stomatal patterning to many exogenous and environmental cues remain less clear. Light quantity and quality, vapour pressure deficit, soil water content, and CO2 concentration are detected by the plant, and new leaves adapt their stomatal densities accordingly. Mature leaves detect these environmental signals and relay messages to immature leaves to tell them how to adapt and grow. Stomata on mature leaves may act as stress signal-sensing and transduction centres, locally by aperture adjustment, and at long distance by optimizing stomatal density to maximize future carbon gain while minimizing water loss. Although mechanisms of stomatal aperture responses are well characterized, the pathways by which mature stomata integrate environmental signals to control immature epidermal cell fate, and ultimately stomatal density, are not. Here we evaluate current understanding of the latter through the influence of the former. We argue that mature stomata, as key portals by which plants coordinate their carbon and water relations, are controlled by abscisic acid (ABA), both metabolically and hydraulically, and that ABA is also a core regulator of environmentally determined stomatal development.


Assuntos
Ácido Abscísico/metabolismo , Meio Ambiente , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Plantas/metabolismo , Carbono/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Estresse Fisiológico
18.
Bioresour Technol ; 406: 131060, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950831

RESUMO

This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.

19.
Nat Plants ; 10(3): 390-401, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467801

RESUMO

Scientific testing including stable isotope ratio analysis (SIRA) and trace element analysis (TEA) is critical for establishing plant origin, tackling deforestation and enforcing economic sanctions. Yet methods combining SIRA and TEA into robust models for origin verification and determination are lacking. Here we report a (1) large Eastern European timber reference database (Betula, Fagus, Pinus, Quercus) tailored to sanctioned products following the Ukraine invasion; (2) statistical test to verify samples against a claimed origin; (3) probabilistic model of SIRA, TEA and genus distribution data, using Gaussian processes, to determine timber harvest location. Our verification method rejects 40-60% of simulated false claims, depending on the spatial scale of the claim, and maintains a low probability of rejecting correct origin claims. Our determination method predicts harvest location within 180 to 230 km of true location. Our results showcase the power of combining data types with probabilistic modelling to identify and scrutinize timber harvest location claims.


Assuntos
Fagus , Pinus , Ucrânia , Betula , Genes de Plantas
20.
J Exp Bot ; 64(12): 3567-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23888066

RESUMO

Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development.


Assuntos
Bryopsida/genética , RNA de Plantas/genética , Transcriptoma , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Estudo de Associação Genômica Ampla , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa