Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 400: 115037, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417438

RESUMO

BACKGROUND: In recent years, small animal arterial port-catheter systems have been implemented in rodents with reasonable success. The aim of the current study is to employ the small animal port-catheter system to evaluate the safety of multiple hepatic-artery infusions (HAI) of low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticles to the rat liver. METHODS: Wistar rats underwent surgical placement of indwelling HAI ports. Repeated administrations of PBS or LDL-DHA nanoparticles were performed through the port at baseline and days 3 and 6. Rats were sacrificed on day 9 at which point blood and various organs were collected for histopathology and biochemical analyses. RESULTS: The port-catheter systems were implanted successfully and repeated infusions of PBS or LDL-DHA nanoparticles were tolerated well by all animals over the duration of the study. Measurements of serum liver/renal function tests, glucose and lipid levels did not differ between control and LDL-DHA treated rats. The liver histology was unremarkable in the LDL-DHA treated rats and the expression of hepatic inflammatory regulators (NF-κß, IL-6 and CRP) were similar to control rats. Repeated infusions of LDL-DHA nanoparticles did not alter liver glutathione content or the lipid profile in the treated rats. The DHA extracted by the liver was preferentially metabolized to the anti-inflammatory DHA-derived mediator, protectin DX. CONCLUSION: Our findings indicate that repeated HAI of LDL-DHA nanoparticles is not only well tolerated and safe in the rat, but may also be protective to the liver.


Assuntos
Cateteres de Demora/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Artéria Hepática , Infusões Intra-Arteriais/efeitos adversos , Lipoproteínas LDL/administração & dosagem , Fígado/metabolismo , Nanopartículas/administração & dosagem , Animais , Glicemia/análise , Ácidos Docosa-Hexaenoicos/farmacocinética , Infusões Intra-Arteriais/métodos , Testes de Função Renal , Lipídeos/sangue , Lipoproteínas LDL/farmacocinética , Fígado/irrigação sanguínea , Testes de Função Hepática , Masculino , Ratos Wistar , Distribuição Tecidual
2.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847457

RESUMO

Lipoproteins are a family of naturally occurring macromolecular complexes consisting amphiphilic apoproteins, phospholipids, and neutral lipids. The physiological role of mammalian plasma lipoproteins is to transport their apolar cargo (primarily cholesterol and triglyceride) to their respective destinations through a highly organized ligand-receptor recognition system. Current day synthetic nanoparticle delivery systems attempt to accomplish this task; however, many only manage to achieve limited results. In recent years, many research labs have employed the use of lipoprotein or lipoprotein-like carriers to transport imaging agents or drugs to tumors. The purpose of this review is to highlight the pharmacologic, clinical, and molecular evidence for utilizing lipoprotein-based formulations and discuss their scientific rationale. To accomplish this task, evidence of dynamic drug interactions with circulating plasma lipoproteins are presented. This is followed by epidemiologic and molecular data describing the association between cholesterol and cancer.


Assuntos
Lipoproteínas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Colesterol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Interações Medicamentosas/fisiologia , Humanos , Nanopartículas/administração & dosagem , Neoplasias/metabolismo
3.
Biochim Biophys Acta ; 1855(1): 92-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25512197

RESUMO

Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.


Assuntos
Crescimento e Desenvolvimento/genética , Proteínas Inibidoras de Diferenciação/fisiologia , Neoplasias/genética , Adulto , Sequência de Aminoácidos , Animais , Diferenciação Celular , Humanos , Proteínas Inibidoras de Diferenciação/química , Proteínas Inibidoras de Diferenciação/classificação , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neoplasias/patologia , Filogenia , Homologia de Sequência
4.
Biochem Biophys Res Commun ; 478(1): 60-66, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462022

RESUMO

Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Próstata/metabolismo , Proteínas de Ligação a Tacrolimo/genética
5.
Biol Proced Online ; 18: 9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26997919

RESUMO

BACKGROUND: 2'-5' oligoadenylate synthetases (OAS) are interferon inducible enzymes that polymerizes ATP to 2'-5'-linked oligomers of adenylate (2-5As). As part of the innate immune response, these enzymes are activated by viral double stranded RNA or mRNAs with significant double stranded structure. The 2-5As in turn activate RNaseL that degrade single stranded RNAs. Three distinct forms of OAS exist in human cells (OAS1, 2 and 3) with each form having multiple spliced variants. The OAS enzymes and their spliced variants have different enzyme activities. OAS enzymes also play a significant role in regulating multiple cellular processes such as proliferation and apoptosis. Moreover, Single nucleotide polymorphisms that alter OAS activity are also associated with viral infection, diabetes and cancer. Thus detection of OAS enzyme activity with a simple spectrophotometric method in cells will be important in clinical research. RESULTS: Here we propose a modified coupled spectrophotometric assay to detect 2-5 oligoadenylate synthetase (OAS) enzyme activity in prostate cell lines as a model system. The OAS enzyme from prostate cancer cell lysates was purified using Polyinosinic: polycytidylic acid (poly I:C) bound activated sepharose beads. The activated OAS enzyme eluted from Sepharose beads showed expression of p46 isoform of OAS1, generally considered the most abundant OAS isoform in elutes from DU14 cell line but not in other prostate cell line. In this assay the phosphates generated by the OAS enzymatic reaction is coupled with conversion of the substrate 2-amino-6-mercapto-7-methylpurine ribonucleoside (methylthioguanosine, a guanosine analogue; MESG) to a purine base product, 2-amino-6-mercapto-7-methylpurine and ribose1-phosphate via a catalyst purine nucleoside phosphorylase (phosphorylase) using a commercially available pyrophosphate kit. The absorbance of the purine base product is measured at 360 nm. The higher levels of phosphates detected in DU145 cell line indicates more activity of OAS in this prostate cancer cell line. CONCLUSION: The modified simple method detected OAS enzyme activity with sensitivity and specificity, which could help in detection of OAS enzymes avoiding the laborious and radioactive methods.

6.
Prostate ; 75(3): 266-79, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25327819

RESUMO

BACKGROUND: The interferon inducible Myxovirus (influenza virus) resistance A (MxA) is considered as a key mediator of the interferon-induced antiviral response. Mx proteins contain the typical GTP-binding motif and show significant homology to dynamin family of GTPases. Strong interaction of MxA with tubulin suggests that Mx proteins could be involved in mitosis. Studies have shown that MxA inhibit tumor motility/metastasis and virus induced apoptosis. However, the clear association between MxA expression and cancer remains unknown. Meta-analysis suggested that MxA expression was inversely correlated with prostate cancer (PCa). In this study, we demonstrate the expression MxA in PCa and its functional significance on the cancer phenotype. METHODS: The expression of MxA protein in prostate cancer was examined by immuno-histochemistry. MxA was knocked down (shMxA) or over-expressed (pMxA) in DU145 or LNCaP PCa cell lines respectively. These cell lines were used to study proliferation, apoptosis, invasion, migration, and anchorage independent growth. Co-localization of MxA with tubulin was performed by immuno-cytochemistry following Docetaxel treatment. RESULTS: The expression of MxA protein was significantly decreased in PCa as compared to the normal tissues. DU145 cells lacking MxA (DU145 + chMxA) showed significant increase in proliferation, associated with decreased expression of CDKN1A and B. Increased migration, anchorage independent growth in DU145 + shMxA cells was associated with increased MMP13 expression. Tubulin organization was also dependent on MxA expression. Tubulin polymerizing agents such as Docetaxel was less effective in promoting apoptosis in cells lacking MxA due to altered tubulin organization. Gain of MxA expression in LNCaP cells (LNCaP + pMxA) resulted in cell cycle arrest that was associated with increased expression of CDKN1A. MxA expression was also down-regulated by dihydrotestosterone in LNCaP cells. CONCLUSIONS: MxA expression is inversely correlated with prostate cancer. Down-regulation of MxA in LNCaP cells by DHT suggests that MxA could play a significant role in disease progression. Loss of MxA expression results in increased metastasis and decreased sensitivity to Docetaxel suggesting that MxA expression could determine the outcome of chemo-therapeutic treatment. Additional studies will be required to fully establish the cross-talk between androgen receptor-IFN pathway in regulating MxA expression in the normal prostate and prostate cancer. Prostate 75:266-279, 2015. © 2014 Wiley Periodicals, Inc.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Neoplasias da Próstata/metabolismo , Taxoides/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel , Humanos , Masculino , Proteínas de Resistência a Myxovirus/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Taxoides/uso terapêutico , Tubulina (Proteína)/metabolismo
7.
Mol Cell Proteomics ; 12(11): 3221-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23938467

RESUMO

Spermiogenesis is a postmeiotic process that drives development of round spermatids into fully elongated spermatozoa. Spermatid elongation is largely controlled post-transcriptionally after global silencing of mRNA synthesis from the haploid genome. Here, rats that differentially express EGFP from a lentiviral transgene during early and late steps of spermiogenesis were used to flow sort fractions of round and elongating spermatids. Mass-spectral analysis of 2D gel protein spots enriched >3-fold in each fraction revealed a heterogeneous RNA binding proteome (hnRNPA2/b1, hnRNPA3, hnRPDL, hnRNPK, hnRNPL, hnRNPM, PABPC1, PABPC4, PCBP1, PCBP3, PTBP2, PSIP1, RGSL1, RUVBL2, SARNP2, TDRD6, TDRD7) abundantly expressed in round spermatids prior to their elongation. Notably, each protein within this ontology cluster regulates alternative splicing, sub-cellular transport, degradation and/or translational repression of mRNAs. In contrast, elongating spermatid fractions were enriched with glycolytic enzymes, redox enzymes and protein synthesis factors. Retrogene-encoded proteins were over-represented among the most abundant elongating spermatid factors identified. Consistent with these biochemical activities, plus corresponding histological profiles, the identified RNA processing factors are predicted to collectively drive post-transcriptional expression of an alternative exome that fuels finishing steps of sperm maturation and fitness.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Espermátides/metabolismo , Animais , Forma Celular , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Modelos Biológicos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Maturação do Esperma/genética , Maturação do Esperma/fisiologia , Espermátides/citologia , Espermatogênese/genética , Espermatogênese/fisiologia
8.
Biol Reprod ; 90(2): 32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389876

RESUMO

In mammalian testes, "A-single" spermatogonia function as stem cells that sustain sperm production for fertilizing eggs. Yet, it is not understood how cellular niches regulate the developmental fate of A-single spermatogonia. Here, immunolabeling studies in rat testes define a novel population of ERBB3(+) germ cells as approximately 5% of total SNAP91(+) A-single spermatogonia along a spermatogenic wave. As a function of time, ERBB3(+) A-single spermatogonia are detected during a 1- to 2-day period each 12.9-day sperm cycle, representing 35%-40% of SNAP91(+) A-single spermatogonia in stages VIII-IX of the seminiferous epithelium. Local concentrations of ERBB3(+) A-single spermatogonia are maintained under the mean density measured for neighboring SNAP91(+) A-single spermatogonia, potentially indicative of niche saturation. ERBB3(+) spermatogonia also synchronize their cell cycles with epithelium stages VIII-IX, where they form physical associations with preleptotene spermatocytes transiting the blood-testis barrier and Sertoli cells undergoing sperm release. Thus, A-single spermatogonia heterogeneity within this short-lived and reoccurring microenvironment invokes novel theories on how cellular niches integrate with testicular physiology to orchestrate sperm development in mammals.


Assuntos
Ciclo Celular/fisiologia , Epitélio Seminífero/fisiologia , Espermatogônias/citologia , Espermatogônias/fisiologia , Animais , Diferenciação Celular/fisiologia , Separação Celular , Masculino , Ratos , Ratos Sprague-Dawley , Receptor ErbB-3/metabolismo , Epitélio Seminífero/citologia , Espermatogênese/fisiologia , Espermatogônias/classificação , Testículo/citologia , Testículo/fisiologia
9.
Mol Cancer ; 12: 161, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330748

RESUMO

BACKGROUND: The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expression is observed in one third of prostate cancer. Here we demonstrate that Id4, an HLH transcriptional regulator and a tumor suppressor, can restore the mutant p53 transcriptional activity in prostate cancer cells. METHODS: Id4 was over-expressed in prostate cancer cell line DU145 harboring mutant p53 (P223L and V274F) and silenced in LNCaP cells with wild type p53. The cells were used to quantitate apoptosis, p53 localization, p53 DNA binding and transcriptional activity. Immuno-precipitation/-blot studies were performed to demonstrate interactions between Id4, p53 and CBP/p300 and acetylation of specific lysine residues within p53. RESULTS: Ectopic expression of Id4 in DU145 cells resulted in increased apoptosis and expression of BAX, PUMA and p21, the transcriptional targets of p53. Mutant p53 gained DNA binding and transcriptional activity in the presence of Id4 in DU145 cells. Conversely, loss of Id4 in LNCaP cells abrogated wild type p53 DNA binding and transactivation potential. Gain of Id4 resulted in increased acetylation of mutant p53 whereas loss of Id4 lead to decreased acetylation in DU145 and LNCaP cells respectively. Id4 dependent acetylation of p53 was in part due to a physical interaction between Id4, p53 and acetyl-transferase CBP/p300. CONCLUSIONS: Taken together, our results suggest that Id4 regulates the activity of wild type and mutant p53. Id4 promoted the assembly of a macromolecular complex involving CBP/P300 that resulted in acetylation of p53 at K373, a critical post-translational modification required for its biological activity.


Assuntos
Proteínas Inibidoras de Diferenciação/metabolismo , Lisina/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/química
10.
Mol Cancer ; 12: 67, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23786676

RESUMO

BACKGROUND: Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. METHODS: Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression. RESULTS: Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions. Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN. CONCLUSIONS: Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression. One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex alterations, large neoplastic lesions in Id4-/- prostates were not observed suggesting the possibility of mechanisms/pathways such as loss of Akt that could restrain the formation of significant pre-cancerous lesions.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas Inibidoras de Diferenciação/deficiência , PTEN Fosfo-Hidrolase/metabolismo , Próstata/crescimento & desenvolvimento , Neoplasia Prostática Intraepitelial/metabolismo , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Humanos , Proteínas Inibidoras de Diferenciação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Próstata/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Prostate ; 73(6): 624-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23060149

RESUMO

BACKGROUND: In prostate cancer cells, transforming growth factor ß (TGFß) inhibits proliferation in earlier stages of the disease; however, the cancer cells become refractory to growth inhibitory effects in advanced stages where TGFß promotes cancer progression and metastasis. Inhibitor of differentiation (Id) family of closely related proteins (Id1-Id4) are dominant negative regulators and basic helix loop helix (bHLH) transcription factors and in general promote proliferation, and inhibit differentiation. In the present study, we have investigated the role of Id1 and Id3 proteins in the growth inhibitory effects of TGFß on prostate cancer cells. METHODS: The effect of TGF ß on proliferation and Id1 and Id3 expression were investigated in PZ-HPV7, DU145, and PC3 cells. Id1 silencing through siRNA was also used in DU145 and PC3 cells to examine its role in anti-proliferative and migratory effects of TGFß. RESULTS: TGFß increased expression of Id1 and Id3 in all cell lines followed by a later down regulation of Id1 in PZ-HPV7 expression and DU145 cells but not in PC3 cells. Id3 expression remained elevated in all three cell lines. This loss of Id1 protein correlated with an increase of CDKNI p21. Id1 knockdown in both DU145 and PC3 cells resulted in decreased proliferation. However, while TGFß caused a further decrease in proliferation of DU145, but had no further effects in PC3 cells. Knockdown of Id1 or Id3 inhibited TGFß1induced migration in PC3 cells. CONCLUSIONS: These findings suggest an essential role of Id1 and Id3 in TGFß1 effects on proliferation and migration in prostate cancer cells.


Assuntos
Movimento Celular/fisiologia , Proteína 1 Inibidora de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/farmacologia , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/farmacologia
12.
Biochem Biophys Res Commun ; 422(1): 146-51, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22564737

RESUMO

E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Inativação Gênica , Humanos , Masculino
13.
Front Oncol ; 12: 1052221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505796

RESUMO

Introduction: Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods: N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion: Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.

14.
Cancer ; 117(24): 5509-18, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21638280

RESUMO

BACKGROUND: The antiviral, proapoptotic, antiproliferative gene 2'-5' oligoadenylate synthetase (2-5OAS1) converts adenosine triphosphate into a series of 2'-5' oligoadenylates (2-5A). In turn, 2-5A activates latent ribonuclease (RNaseL), a candidate hereditary prostate cancer gene. OAS1 polymorphism (reference single nucleotide polymorphism [SNP] 2660 [rs2660]) has been associated with increased susceptibility to infections and various diseases. In general, the low-enzyme-activity adenine-adenine (AA) genotype promotes susceptibility, whereas the high-enzyme-activity guanosine-guanosine (GG) genotype confers protection. In this study, the authors investigated the association of this functional OAS1 polymorphism (rs2660) with prostate cancer. METHODS: Sample size and power were calculated using a power calculation software program for case-control genetic association analyses. Genomic DNA samples from a control group (n = 140) and from a case group of patients with prostate cancer (n = 164) were used for genotyping SNPs rs2660, rs1131454, and rs34137742 in all samples. Statistical analyses were performed using a logistic regression model. RESULTS: A significant association was observed between the rs2660 genotype (A/G) and prostate cancer. Genotype AA increased the risk, whereas genotype GG decreased the risk of prostate cancer. The GG genotype was not observed in the African American samples. The AA genotype also increased the risk of prostate cancer with age. CONCLUSIONS: The OAS1 SNP rs2660 AA genotype was associated significantly with prostate cancer, whereas the GG genotype protected against prostate cancer. OAS1 rs2660 may be a prostate cancer susceptibility polymorphism, which is a significant observation, especially in a context of the OAS1-RNaseL pathway. Thus, a functional defect in OAS1 because of the rs2660 SNP not only can attenuate RNaseL function but also can alter cell growth and apoptosis independent of RNaseL.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Predisposição Genética para Doença , Genômica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos
15.
iScience ; 24(1): 101880, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458605

RESUMO

In adult males, spermatogonia maintain lifelong spermatozoa production for oocyte fertilization. To understand spermatogonial metabolism we compared gene profiles in rat spermatogonia to publicly available mouse, monkey, and human spermatogonial gene profiles. Interestingly, rat spermatogonia expressed metabolic control factors Foxa1, Foxa2, and Foxa3. Germline Foxa2 was enriched in Gfra1Hi and Gfra1Low undifferentiated A-single spermatogonia. Foxa2-bound loci in spermatogonial chromatin were overrepresented by conserved stemness genes (Dusp6, Gfra1, Etv5, Rest, Nanos2, Foxp1) that intersect bioinformatically with conserved glutathione/pentose phosphate metabolism genes (Tkt, Gss, Gc l c , Gc l m, Gpx1, Gpx4, Fth), marking elevated spermatogonial GSH:GSSG. Cystine-uptake and intracellular conversion to cysteine typically couple glutathione biosynthesis to pentose phosphate metabolism. Rat spermatogonia, curiously, displayed poor germline stem cell viability in cystine-containing media, and, like primate spermatogonia, exhibited reduced transsulfuration pathway markers. Exogenous cysteine, cysteine-like mercaptans, somatic testis cells, and ferroptosis inhibitors counteracted the cysteine-starvation-induced spermatogonial death and stimulated spermatogonial growth factor activity in vitro.

16.
Oncoscience ; 8: 14-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884281

RESUMO

Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. In this study we investigated the effect of loss of Id4 (Id4-/-) on mouse prostate development. Histological analysis was performed on prostates from 25 days, 3 months and 6 months old Id4-/- mice. Expression of Amacr, Ck8, Ck18, Fkbp51, Fkbp52, androgen receptor, Pten, sca-1 and Nkx3.1 was investigated by immunohistochemistry. Results were compared to the prostates from Nkx3.1-/- mice. Id4-/- mice had smaller prostates with fewer and smaller tubules. Subtle PIN like lesions were observed at 6mo. Decreased Nkx3.1 and Pten and increased stem cell marker sca-1, PIN marker Amacr and basal cell marker p63 was observed at all ages. Persistent Ck8 and Ck18 expression suggested that loss of Id4 results in epithelial commitment but not terminal differentiation in spite of active Ar. Loss of Id4 attenuates normal prostate development and promotes hyperplasia/ dysplasia with PIN like lesions. The results suggest that loss of Id4 maintains stem cell phenotype of "luminal committed basal cells", identifying a unique prostate developmental pathway regulated by Id4.

17.
Eur J Pharm Biopharm ; 158: 273-283, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33242579

RESUMO

Hepatic-arterial infusion (HAI) of low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) (LDL-DHA) has been shown in a rat hepatoma model to be a promising treatment for hepatocellular carcinoma. To date, little is known regarding the safety of HAI of LDL-DHA to the liver. Therefore, we aimed to investigate the deposition, metabolism and safety of HAI of LDL-DHA (2, 4 or 8 mg/kg) in the rat. Following HAI, fluorescent labeled LDL nanoparticles displayed a biexponential plasma concentration time curve as the particles were rapidly extracted by the liver. Overall, increasing doses of HAI of LDL-DHA was well tolerated in the rat. Body weight, plasma biochemistry and histology were all unremarkable and molecular markers of inflammation did not increase with treatment. Lipidomics analyses showed that LDL-DHA was preferentially oxidized to the anti-inflammatory mediator, protectin DX. We conclude that HAI of LDL-DHA nanoparticles is not only safe, but provides potential hepatoprotective benefits.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ácidos Docosa-Hexaenoicos/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacocinética , Relação Dose-Resposta a Droga , Portadores de Fármacos/efeitos adversos , Humanos , Infusões Intra-Arteriais , Lipoproteínas LDL/efeitos adversos , Lipoproteínas LDL/química , Fígado/irrigação sanguínea , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Nanopartículas/química , Ratos , Distribuição Tecidual
18.
Cell Mol Biol Lett ; 15(2): 272-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20186495

RESUMO

Id1 (inhibitor of differentiation 1) is a member of the bHLH protein family. Consistent with its role in promoting proliferation and inhibiting differentiation, Id1 expression is low or negligible in normal prostate epithelial cells but is high in prostate cancer. Ectopic expression of Id1 in normal prostate epithelial cells could therefore provide a model for understanding early events involved in initiation of prostate cancer. Over-expression of Id1 immortalized but did not transform ventral prostate epithelial cells (Id1-RPE). Immortalization was associated with decreased Cdkn2a, Cdkn1a, androgen receptor and increased Tert expression. Gene expression profiling over successive doublings was used to identify transcriptomic changes involved during immortalization (Tieg, Jun, alpha actin, Klf10, Id2) and in maintaining the immortalized phenotype (Igfbp3, Igfbp5, Mmp2, Tgfb3). Network analysis indicated that Id1 promotes cancer/tumor morphology, cell cycle and epithelial to mesenchymal transition by influencing AP1, tnf, tgfbeta, PdgfBB and estradiol pathways. During immortalization, the expression of majority of differentially expressed genes reduced over progressive doublings suggesting a decline in transcriptional regulatory mechanisms. The associated molecular/gene expression profile of Id1-RPE cells provides an opportunity to understand the molecular pathways associated with prostate epithelial cell survival and proliferation.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Próstata/citologia , Ágar , Androgênios/farmacologia , Animais , Biomarcadores/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Biologia Computacional , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Cariotipagem , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Telomerase/metabolismo
19.
Cell Chem Biol ; 27(3): 292-305.e6, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017918

RESUMO

Hsp90 plays an important role in health and is a therapeutic target for managing misfolding disease. Compounds that disrupt co-chaperone delivery of clients to Hsp90 target a subset of Hsp90 activities, thereby minimizing the toxicity of pan-Hsp90 inhibitors. Here, we have identified SEW04784 as a first-in-class inhibitor of the Aha1-stimulated Hsp90 ATPase activity without inhibiting basal Hsp90 ATPase. Nuclear magnetic resonance analysis reveals that SEW84 binds to the C-terminal domain of Aha1 to weaken its asymmetric binding to Hsp90. Consistent with this observation, SEW84 blocks Aha1-dependent Hsp90 chaperoning activities, including the in vitro and in vivo refolding of firefly luciferase, and the transcriptional activity of the androgen receptor in cell-based models of prostate cancer and promotes the clearance of phosphorylated tau in cellular and tissue models of neurodegenerative tauopathy. We propose that SEW84 provides a novel lead scaffold for developing therapeutic approaches to treat proteostatic disease.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Estrutura Molecular , Dobramento de Proteína/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
20.
Prostate ; 69(8): 838-50, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19204916

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is an age-related enlargement of the prostate, characterized by increased proliferation of stromal and epithelial cells. Despite its prevalence, the etiology of BPH is unknown. METHODS: The Brown Norway rat is a model for age-dependent, lobe-specific hyperplasia of the prostate. Histological analyses of the dorsal and lateral lobes from aged rats reveal focal areas characterized by increased numbers of luminal epithelial cells, whereas the ventral lobe is unaffected. This study examined differential gene expression by lobe and age in the Brown Norway rat prostate. The objective was to identify genes with different levels of expression in the prostate lobes from 4-month (young) and 24-month (old) animals, and to subsequently link changes in gene expression to mechanisms of prostate aging. RESULTS: The number of age-dependent differentially expressed genes was greatest in the dorsal compared to the ventral and lateral lobes. Minimal redundancy was observed among the differentially expressed genes in the three lobes. Age-related changes in the expression levels of 14 candidate genes in the dorsal, lateral and ventral lobes were confirmed by quantitative RT-PCR. Genes that exhibited age-related differences in their expression were associated with proliferation, oxidative stress, and prostate cancer progression, including topoisomerase II alpha (Topo2a), aurora kinase B (Aurkb), stathmin 1 (Stmn1), and glutathione S-transferase pi. Immunohistochemistry for Topo2a, Aurkb, and Stmn1 confirmed age-related changes in protein localization in the lateral lobe of young and aged prostates. CONCLUSION: These findings provide clues to the molecular events associated with aging in the prostate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hiperplasia Prostática/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Análise por Conglomerados , Primers do DNA , Modelos Animais de Doenças , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Orquiectomia , Proteínas/genética , RNA/genética , RNA/isolamento & purificação , Ratos , Ratos Endogâmicos BN , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa