Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37109631

RESUMO

Orofacial granulomatosis (OFG) represents a heterogeneous group of rare orofacial diseases. When affecting gingiva, it appears as a chronic soft tissue inflammation, sometimes combined with the enlargement and swelling of other intraoral sites, including the lips. Gingival biopsy highlights noncaseating granulomatous inflammation, similar to that observed in Crohn's disease and sarcoidosis. At present, the etiology of OFG remains uncertain, although the involvement of the genetic background and environmental triggers, such as oral conditions or therapies (including orthodontic treatment), has been suggested. The present study reports the results of a detailed clinical and 2D/3D microscopy investigation of a case of gingival orofacial granulomatosis in an 8-year-old male patient after orthodontic therapy. Intraoral examination showed an erythematous hyperplasia of the whole gingiva with a granular appearance occurring a few weeks after the installation of a quad-helix. Peri-oral inspection revealed upper labial swelling and angular cheilitis. General investigations did not report ongoing extra-oral disturbances with the exception of a weakly positive anti-Saccharomyces cerevicae IgG auto-antibody. Two- and three-dimensional microscopic investigations confirmed the presence of gingival orofacial granulomatosis. Daily corticoid mouthwashes over a period of 3 months resulted in a slight improvement in clinical signs, despite an intermittent inflammation recurrence. This study brings new insights into the microscopic features of gingival orofacial granulomatosis, thus providing key elements to oral practitioners to ensure accurate and timely OFG diagnosis. The accurate diagnosis of OFG allows targeted management of symptoms and patient monitoring over time, along with early detection and treatment of extra-oral manifestations, such as Crohn's disease.


Assuntos
Doença de Crohn , Granulomatose Orofacial , Masculino , Humanos , Criança , Granulomatose Orofacial/etiologia , Granulomatose Orofacial/diagnóstico , Granulomatose Orofacial/tratamento farmacológico , Doença de Crohn/complicações , Gengiva , Microscopia , Inflamação/complicações , Edema
2.
Front Physiol ; 13: 899626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910575

RESUMO

Traditional thin sectioning microscopy of large bone and dental tissue samples using demineralization may disrupt structure morphologies and even damage soft tissues, thus compromising the histopathological investigation. Here, we developed a synergistic and original framework on thick sections based on wide-field multi-fluorescence imaging and spectral Principal Component Analysis (sPCA) as an alternative, fast, versatile, and reliable solution, suitable for highly mineralized tissue structure sustain and visualization. Periodontal 2-mm thick sections were stained with a solution containing five fluorescent dyes chosen for their ability to discriminate close tissues, and acquisitions were performed with a multi-zoom macroscope for blue, green, red, and NIR (near-infrared) emissions. Eigen-images derived from both standard scaler (Std) and Contrast Limited Adaptive Histogram Equalization (Clahe) pre-preprocessing significantly enhanced tissue contrasts, highly suitable for histopathological investigation with an in-depth detail for sub-tissue structure discrimination. Using this method, it is possible to preserve and delineate accurately the different anatomical/morphological features of the periodontium, a complex tooth-supporting multi-tissue. Indeed, we achieve characterization of gingiva, alveolar bone, cementum, and periodontal ligament tissues. The ease and adaptability of this approach make it an effective method for providing high-contrast features that are not usually available in standard staining histology. Beyond periodontal investigations, this first proof of concept of an sPCA solution for optical microscopy of complex structures, especially including mineralized tissues opens new perspectives to deal with other chronic diseases involving complex tissue and organ defects. Overall, such an imaging framework appears to be a novel and convenient strategy for optical microscopy investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa