Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Immunity ; 54(12): 2772-2783.e5, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788602

RESUMO

Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Plasmócitos/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Antígeno B7-1/metabolismo , Antígenos CD28/metabolismo , Autorrenovação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Imunidade Humoral , Memória Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
2.
Proc Natl Acad Sci U S A ; 113(14): E2019-28, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001830

RESUMO

A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site-selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
3.
Cell Rep ; 43(7): 114445, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968073

RESUMO

Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.

4.
Cancer Immunol Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949179

RESUMO

CTL recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells but also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM-1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes (TIL) and long-term survival of melanoma patients. Using MART-1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM-1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior costimulatory effects of DNAM-1 over CD28 involved enhanced TCR signaling, CTL killer function and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in the antigen specificity and selectivity of killer function. In addition, the elevation of NKR-Ligand expression on cancer cells by chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAA. Our data help to explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.

5.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38562904

RESUMO

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

6.
Cell Mol Immunol ; 21(3): 260-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233562

RESUMO

Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.


Assuntos
Processamento Alternativo , Antígenos CD28 , Antígenos CD28/metabolismo , Processamento Alternativo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T CD8-Positivos , Glucose/metabolismo
7.
PLoS Genet ; 6(3): e1000883, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20333241

RESUMO

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target "hub" where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.


Assuntos
Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Res Sq ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37886562

RESUMO

CD28-driven "signal 2" is critical for naïve CD8+ T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing. Double-transduction of T cells with recombinant TCR and NKR constructs or upregulation of NKR-ligand expression on cancer cells by chemotherapy enabled effective recognition and killing of poorly immunogenic tumor cells by CTLs. Operational synergy between TCR and NKRs in CTL recognition explains the ability of cancer-expressed self-antigens to serve as tumor rejection antigens, helping to develop more effective therapies.

9.
Cell Rep ; 31(12): 107815, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579940

RESUMO

Durable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival. Here we show that CD28 transduces pro-survival signaling specifically in LLPCs through differential SLP76 expression. CD28 signaling in LLPCs increased glucose uptake, mitochondrial mass/respiration, and reactive oxygen species (ROS) production. Unexpectedly, CD28-mediated regulation of mitochondrial respiration, NF-κB activation, and survival was ROS dependent. IRF4, a target of NF-κB, was upregulated by CD28 activation in LLPCs and decreased IRF4 levels correlated with decreased glucose uptake, mitochondrial mass, ROS, and CD28-mediated survival. Altogether, these data demonstrate that CD28 signaling induces a ROS-dependent metabolic program required for LLPC survival.


Assuntos
Antígenos CD28/metabolismo , Plasmócitos/citologia , Plasmócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Respiração Celular , Sobrevivência Celular , Feminino , Glucose/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Baço/citologia
10.
Mol Cell Biol ; 35(2): 417-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384973

RESUMO

The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Animais , Polaridade Celular/genética
11.
Mol Cell Biol ; 35(8): 1414-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666509

RESUMO

Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.


Assuntos
Sistema de Sinalização das MAP Quinases , Mucinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Glicosilação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteólise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Genetics ; 198(3): 1309-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189875

RESUMO

Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.


Assuntos
Diferenciação Celular/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Estudos de Associação Genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
PLoS One ; 7(4): e32294, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496730

RESUMO

Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK) pathway and the same cell adhesion molecule (Flo11) but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis) and substrate invasion (downward in the plane of the Z-axis), which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis) in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.


Assuntos
Biofilmes , Sistema de Sinalização das MAP Quinases , Percepção de Quorum/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Adaptação Biológica , Adesão Celular , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Transdução de Sinais
14.
Curr Biol ; 20(15): 1389-95, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20619652

RESUMO

Cell adhesion is a key feature in the regulation of many biological processes. In the budding yeast Saccharomyces cerevisiae, Flo11p is the major adhesion molecule that controls filamentous growth [1-3] and the expansion of interconnected cells in mats or biofilms [4]. We show here that Flo11p is shed from cells. Flo11p shedding attenuated adherence and contributed to the overall balance in adherence properties that was optimal for filamentous growth and mat formation. Shed Flo11p comprised an essential component of a fluid layer surrounding yeast mats that may be functionally analogous to the mucus secretions of higher eukaryotes. Genome-wide secretion profiling of Flo11p identified new regulatory proteins, including the furin protease Kex2p, which was required for cleavage and maturation of the Flo11p protein. Secreted mucin-like proteins may play unexpected roles in the adherence properties and virulence of microbial pathogens.


Assuntos
Biofilmes/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adesão Celular , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa