Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 45(4): 1409-1418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082050

RESUMO

Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Neurônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroglia
2.
Cryobiology ; 114: 104843, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158171

RESUMO

Coolant-assisted liquid nitrogen (LN) flash freezing of frozen tissues has been widely adopted to preserve tissue morphology for histopathological annotations in mass spectrometry-based spatial proteomics techniques. However, existing coolants pose health risks upon inhalation and are expensive. To overcome this challenge, we present our pilot study by introducing the EtOH-LN workflow, which demonstrates the feasibility of using 95 % ethanol as a safer and easily accessible alternative to existing coolants for LN-based cryoembedding of frozen tissues. Our study reveals that both the EtOH-LN and LN-only cryoembedding workflows exhibit significantly reduced freezing artifacts compared to cryoembedding in cryostat (p < 0.005), while EtOH-LN (SD = 0.56) generates more consistent results compared to LN-only (SD = 1.29). We have modified a previously reported morphology restoration method to incorporate the EtOH-LN workflow, which successfully restored the tissue architecture from freezing artifacts (p < 0.05). Additional studies are required to validate the impact of the EtOH-LN workflow on the molecular profiles of tissues.


Assuntos
Artefatos , Proteômica , Congelamento , Projetos Piloto , Fluxo de Trabalho , Criopreservação/métodos , Etanol , Espectrometria de Massas , Nitrogênio
3.
Metab Brain Dis ; 39(2): 335-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950815

RESUMO

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.


Assuntos
Transtorno Obsessivo-Compulsivo , Qualidade de Vida , Animais , Humanos , Transtorno Obsessivo-Compulsivo/diagnóstico , Transdução de Sinais , Encéfalo/metabolismo , Cognição
4.
Crit Rev Food Sci Nutr ; 63(19): 3302-3332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34613853

RESUMO

Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.


Assuntos
Asma , Doenças Respiratórias , Humanos , Qualidade de Vida , Suplementos Nutricionais , Asma/tratamento farmacológico , Doenças Respiratórias/tratamento farmacológico
5.
Metab Brain Dis ; 38(1): 45-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239867

RESUMO

Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches' that targets depression via influence on the inflammatory signaling pathways. Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression.


Assuntos
Transtorno Depressivo Maior , Masculino , Humanos , Feminino , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Qualidade de Vida , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
6.
Altern Ther Health Med ; 29(3): 67-73, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35212647

RESUMO

Context: Lymphopenia has been frequently documented and linked to coronavirus disease 2019 (COVID-19) in a severe acute respiratory syndrome (SARS)-coronavirus 2 (CoV-2) attack. A decrease in the T-lymphocyte count has shown promise as a clinical indicator and predictor of COVID-19 severity. Objective: The review intended to examine the relationship of COVID-19 infections in individuals to lost expression of CD28 on naive CD4+/CD8+-mediated, vaccine-specific, neutralizing antibody responses. Design: The research team performed a narrative review by searching eight databases: Medline, Elsevier, Cochrane, PubMed, Google Scholar, Mendeley, and Springer Nature. The search used the following key terms: SARS CoV-2, clinical aspects and pathology of SARS CoV-2, involvement of viral spike (S) protein in SARS CoV-2, immunological changes in COVID-19 infection, basic overview of CD28 immuno-molecule ligand, reduction of vaccine therapeutic efficacy in COVID-19 infection, and immunomodulatory response of lost CD28 ligand. Setting: This study was done in a Maharishi Arvind College of Pharmacy, Jaipur, India. Results: In COVID-19 patients, particularly those with severe disease, had increased levels of IL-2 or IL-2R. Given IL-2's supportive role in the expansion and differentiation of T cells, the authors exhibiting that lymphopenia, particularly in severe COVID-19, could be attributed to nonfunctional and dysfunctional differentiation of CD4+ and CD8+ T cells as a result of low CD28 immuno-molecule expression on naive T cells. Conclusions: The literature review found that independent, early immunological prognostic markers for a poor prognosis, in addition to higher levels of IL-6, include a substantial proportion of large inflammatory monocytes and a small proportion of chronic CD28+ CD4+T cells. The current findings suggest that a combination of COVID-19 vaccination with SARS CoV-2-reactive naive T cells with the CD28 immune-molecule may be a viable method for establishing T-cell-based, adaptive cellular immunotherapy against COVID-19 infection. Further research is needed, especially larger studies to confirm the current findings, to improve early clinical treatment.


Assuntos
COVID-19 , Linfopenia , Humanos , Antígenos CD28 , Vacinas contra COVID-19 , Interleucina-2 , Ligantes , SARS-CoV-2
7.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630329

RESUMO

Vibriosis and parasitic leech infestations cause the death of various farmed fish, such as groupers, hybrid groupers, sea bass, etc., in Malaysia and other Southeast Asian countries. In the absence of natural control agents, aquaculture operators rely on toxic chemicals to control Vibrio infections and parasitic leeches, which can have a negative impact on the environment and health. In the present study, we investigated the antivibrio and antiparasitic activities of the aqueous extract of giant sword fern (GSF) (Nephrolepis biserrata, Nephrolepidaceae, locally known as "Paku Pedang") against four Vibrio spp. and the parasitic leech Zeylanicobdella arugamensis, as well as its metabolic composition using the ultra-high-performance liquid chromatography-high-resolution mass spectrometry system (UHPLC-HRMS). The data show that the aqueous extract of GSF at a concentration of 100 mg/mL exhibits potent bactericidal activity against V. parahaemolyticus with a zone of inhibition of 19.5 mm. In addition, the extract showed dose-dependent activity against leeches, resulting in the complete killing of the parasitic leeches within a short period of 11-43 min when tested at concentrations ranging from 100 to 25 mg/mL. The UHPLC-HRMS analysis detected 118 metabolites in the aqueous extract of GSF. Flavonoids were the primary metabolites, followed by phenolic, aromatic, fatty acyl, terpenoid, vitamin and steroidal compounds. Notably, several of these metabolites possess antibacterial and antiparasitic properties, including cinnamaldehyde, cinnamic acid, apigenin, quercetin, cynaroside, luteolin, naringenin, wogonin, 6-gingerol, nicotinamide, abscisic acid, daidzein, salvianolic acid B, etc. Overall, our study shows the significant antibacterial and antiparasitic potential of the GSF aqueous extract, which demonstrates the presence of valuable secondary metabolites. Consequently, the aqueous extract is a promising natural alternative for the effective control of Vibrio infections and the treatment of parasitic leeches in aquaculture systems.


Assuntos
Anti-Infecciosos , Gleiquênias , Animais , Cromatografia Líquida de Alta Pressão , Anti-Infecciosos/farmacologia , Antiparasitários/farmacologia , Antibacterianos/farmacologia
8.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482329

RESUMO

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

9.
Crit Rev Food Sci Nutr ; 62(27): 7576-7590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977840

RESUMO

Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.


Assuntos
Asma , Broncodilatadores , Anti-Inflamatórios/uso terapêutico , Suplementos Nutricionais , Humanos , Doença Pulmonar Obstrutiva Crônica
10.
Pharm Res ; 39(11): 2817-2829, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195824

RESUMO

PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs). METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined. RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed. CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.


Assuntos
Curcumina , Nanoestruturas , Curcumina/farmacologia , Portadores de Fármacos , Mesalamina , Lipídeos , Reprodutibilidade dos Testes , Tamanho da Partícula
11.
Mol Biol Rep ; 49(11): 11101-11111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109416

RESUMO

The symptoms of ageing are somewhat different and can lead to the altered role of the cardiovascular system at the levels of genetic, biochemical, tissue, organ, and systems. Ageing is an autonomous cardiovascular risk factor. In the ageing rat heart, oxidative and inflammatory stress, immune cell infiltration, increasing myeloperoxidase function, elevated caspase-3 activity, and protein fibronectins were detected and associated with ageing and cardiovascular disease. The intracellular Ca2 + homeostasis disturbed in an older heart dramatically increases cardiomyopathy, atherosclerosis, stroke, ischemia, myocardial infarction, hypertrophy, remodelling, and hypertension. Evidence shows that suppression of Wnt/ß signals prevents cardiovascular dysfunction, such as remodelling, high blood pressure, and excessive overload stress. However, one study has shown that the pharmacological disruption of Wnt-ß-catenin by decreasing expression of α-smooth muscle actin, fibronectin and collagen I proteins attenuates angiotensin II mediated hypertension cardiac fibrosis. Thus, this review examined the impacts of calcium overload and age-related diseases, including cardiovascular. Energy dysregulation, calcium overloading, and mitochondrial dysfunction are the main activities causing cardiovascular disease linked with age. Therefore, the current study explores that age-associated cardiovascular disease has triggered the WNT/ß-catenin pathway, and pharmacological inhibition can delay pathological changes by attenuating calcium dyshomeostasis.


Assuntos
Doenças Cardiovasculares , Hipertensão , Ratos , Animais , beta Catenina/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Via de Sinalização Wnt , Envelhecimento/metabolismo , Hipertensão/metabolismo , Miocárdio/metabolismo
12.
J Integr Neurosci ; 21(1): 41, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164477

RESUMO

Computational approach to study of neuronal impairment is rapidly evolving, as experiments and intuition alone could not explain the complexity of brain system. The increase in an overwhelming amount of new data from both theory and computational modeling necessitate the development of databases and tools for analysis, visualization, and interpretation of neuroscience data. To ensure the sustainability of this development, consistent update and training of young professionals are imperative. For this purpose, relevant articles, chapters, and modules are essential to keep abreast of developments. Therefore, this article seeks to outline the biological databases and analytical tools along with their applications. It's envisaged that knowledge along this line would be a "training recipe" for young talents and guide for professionals and researchers in neuroscience.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Doenças do Sistema Nervoso , Humanos
13.
Environ Toxicol ; 37(3): 446-456, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800081

RESUMO

Acacia catechu Willd (Fabaceae) is a thorny tree widely distributed in India and commonly used as traditional Ayurvedic medicine for various ailments. The current study evaluates the cytotoxic potentials of A. catechu ethanolic seed extract (ACSE) in HepG2 cells, a human hepatocellular carcinoma cell line. The HepG2 cells were treated with 0.1, 0.3, 1, 3, 10, 30, 100, 300 and 1000 µg/ml of ACSE and the cytotoxic effect was evaluated by MTT and lactate dehydrogenase (LDH) leakage assays. The IC50 of ACSE was found at 77.04 µg/ml and therefore, further studies were carried out with the concentrations of 35 and 70 µg/ml. The intracellular reactive oxygen species (ROS) generation and apoptosis-related morphological changes were evaluated. Gene expressions of Bax, Bcl-2, cytochrome C (Cyt-c), caspases-9 and 3 were analyzed by qPCR. The ACSE treatments caused LDH leakage was associated with an increased ROS generation. The increased ROS generation was associated with the downregulation of intracellular antioxidant enzyme superoxide dismutase and reduced glutathione content. AO/EB and PI staining also confirmed chromatin condensation and apoptosis. The flow cytometric analysis showed an accumulation of HepG2 cells at sub G0/G1 (apoptotic) phase upon ACSE treatments. The ACSE induced cytotoxicity and oxidative stress were related to increased apoptotic marker gene expressions such as Bax, Cyt-c, caspase-9 and 3, and decreased anti-apoptotic marker Bcl-2. The current finding suggests that ACSE has apoptosis-inducing potential via the mitochondrial pathway in HepG2 cells.


Assuntos
Acacia , Neoplasias Hepáticas , Apoptose , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial , Extratos Vegetais/toxicidade , Espécies Reativas de Oxigênio
14.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012735

RESUMO

Diabetes is an endocrinological disorder with a rapidly increasing number of patients globally. Over the last few years, the alarming status of diabetes has become a pivotal factor pertaining to morbidity and mortality among the youth as well as middle-aged people. Current developments in our understanding related to autoimmune responses leading to diabetes have developed a cause for concern in the prospective usage of immunomodulatory agents to prevent diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines have been tested in animal models, while only a few human trials have been completed with positive outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a prototype diabetes vaccine.


Assuntos
Diabetes Mellitus Tipo 2 , Vacinas , Adolescente , Animais , Autoimunidade , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Linfócitos T , Vacinas/uso terapêutico
15.
Inflammopharmacology ; 30(3): 725-735, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316427

RESUMO

The chronic respiratory non-communicable diseases, asthma and chronic obstructive pulmonary disease (COPD) are among the leading causes of global mortality and morbidity. Individuals suffering from these diseases are particularly susceptible to respiratory infections caused by bacterial and/or viral pathogens, which frequently result in exacerbation of symptoms, lung function decline, frequent hospital emergency visits and increased socioeconomic burden. Human rhinoviruses (HRV) remain the major viral pathogen group implicated in exacerbations of both asthma and COPD. The rhinoviral entry into the host lung epithelium is facilitated primarily by the adhesion site ("receptor") intercellular adhesion molecule-1 (ICAM-1), coincidentally expressed on the respiratory epithelium in these conditions. Multiple observations of increased airway ICAM-1 protein in asthmatics, smokers and smoking-related COPD have been recorded in the literature. However, the lack of robust therapies for COPD in particular has triggered a renewed interest in assessing receptor antagonism-based anti-viral strategies for treatment of intercurrent viral infections in those with pre-existing chronic lung diseases. Given the crucial role ICAM-1 plays in facilitating HRV adhesion and, thus, transmissibility to the host respiratory system, as well as the up-regulation of ICAM-1 by smoking, we summarize the role of HRV in smoking-induced COPD and especially highlight the role of ICAM-1 in epithelial viral adhesion and chronic lung disease progression. Further, the review also sheds light specifically on evolving precision therapeutic strategies in blocking ICAM-1 for preventing viral adhesion and exacerbations of COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Mucosa Respiratória/metabolismo , Rhinovirus/metabolismo
16.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014458

RESUMO

Stinging nettle (Urtica dioica L., Urticaceae) is commonly found in Asia, Africa, and Europe and has a long history of being used as food and traditional medicine. Recently, this plant is gaining attention as a highly nutritious food, where fresh leaves are dried and used as powder or in other forms. Leaves are rich in many bioactive compounds. This review aims to cover the traditional uses in food and medicine, as well as its nutritional composition, including its bioactive chemical constituents and reported food functional activities. Various bioactive chemical constituents have been isolated from stinging nettle to date, such as flavonoids, phenolic acids, amino acid, carotenoids, and fatty acids. Stinging nettle extracts and its compounds, such as rutin, kaempferol, and vitamin A, are also used for their nutritional properties and as anti-inflammatory and antioxidant agents. Future studies should focus on the proper formulation and stability testing of the functional foods containing stinging nettle and their detailed activities in clinical studies.


Assuntos
Urtica dioica , Urticaceae , Anti-Inflamatórios/química , Extratos Vegetais/química , Folhas de Planta/química , Urtica dioica/química
17.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296708

RESUMO

Xanthohumol (XH) a prenylated chalcone has diverse therapeutic effects against various diseases. In the present study, a bioanalytical method was developed for XH in rat plasma using reverse phase high performance liquid chromatography. The validation of the method was performed as per ICH M10 guidelines using curcumin as an internal standard. The Isocratic elution method was used with a run time of 10 min, wherein the mobile phase ratio 0.1% v/v OPA (A): Methanol (B) was 15:85 v/v at flow rate 0.8 mL/min and injection volume of 20 µL. The chromatograms of XH and curcumin was recorded at a wavelength of 370 nm. The retention time for XH and curcumin was 7.4 and 5.8 min, respectively. The spiked XH from plasma was extracted by the protein precipitation method. The developed method was linear with R2 value of 0.9996 over a concentration range of 50-250 ng/mL along with LLOQ. The results of all the validation parameters are found to be within the accepted limits with %RSD value less than 2 and the percentage recovery was found to be greater than 95%. Based on the %RSD and percentage recovery results it was confirmed that the method was precise and accurate among the study replicates. LOD and LOQ values in plasma samples were found to be 8.49 ng/mL and 25.73 ng/mL, respectively. The stability studies like freeze thaw, short term and long-term stability studies were also performed, %RSD and percentage recovery of the XH from plasma samples were within the acceptable limits. Therefore, the developed bioanalytical method can be used effectively for estimation of XH in plasma samples.


Assuntos
Chalconas , Curcumina , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Metanol , Reprodutibilidade dos Testes
18.
Molecules ; 27(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35566388

RESUMO

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Assuntos
Qualidade de Vida , Thymelaeaceae , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Madeira
19.
J Drug Deliv Sci Technol ; 74: 103541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35774068

RESUMO

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.

20.
Nanomedicine ; 31: 102303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980549

RESUMO

MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.


Assuntos
Antagomirs/química , Antagomirs/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Nanopartículas/química , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nanocápsulas/química , Nanotecnologia/métodos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa