Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biol Res ; 54(1): 23, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344467

RESUMO

The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure.


Assuntos
Cardiopatias Congênitas , Síndrome de Noonan , Cardiomegalia , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais
2.
Biochim Biophys Acta ; 1853(11 Pt A): 2870-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26260012

RESUMO

The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Mutação de Sentido Incorreto , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Remodelação Ventricular , Substituição de Aminoácidos , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Sarcômeros/enzimologia , Sarcômeros/genética
3.
Biochim Biophys Acta ; 1843(11): 2705-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110346

RESUMO

UNLABELLED: The sarco(endo)plasmic reticulum Ca(2+)ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis). Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta. Absolute mRNA quantification revealed SERCA2a as the dominant isoform in the heart (~99%). Both SERCA2 isoforms co-localized in cardiomyocytes (CM) longitudinal sarcoplasmic reticulum (SR), SERCA3b was located at the junctional SR. In the aorta, SERCA2a accounted for ~91% of total SERCA and SERCA2b for ~5%. Among SERCA3, SERCA3b was the most expressed (~3.3%), mainly found in vascular smooth muscle cells (VSMC), along with SERCA2a and 2b. In failing CM, SERCA2a was down-regulated by 2-fold and re-localized from longitudinal to junctional SR. A strong down-regulation of SERCA2a was also observed in atherosclerotic vessels containing mainly synthetic VSMCs. The proportion of both SERCA2b and SERCA3b increased to 9.5% and 8.3%, respectively. IN CONCLUSION: 1) SERCA2a is the major isoform in both cardiac and vascular myocytes; 2) the expression of SERCA2a mRNA is ~30 fold higher in the heart compared to vascular tissues; and 3) nearly half the amount of SERCA2a mRNA is measured in both failing cardiomyocytes and synthetic VSMCs compared to healthy tissues, with a relocation of SERCA2a in failing cardiomyocytes. Thus, SERCA2a is the principal regulator of excitation-contraction coupling in both CMs and contractile VSMCs.

4.
J Physiol ; 591(21): 5337-55, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018949

RESUMO

Pathological left ventricle (LV) hypertrophy (LVH) results in reactive and replacement fibrosis. Volume overload LVH (VOH) is less profibrotic than pressure overload LVH (POH). Studies attribute subendocardial fibrosis in POH to ischaemia, and reduced fibrosis in VOH to collagen degradation favouring dilatation. However, the mechanical origin of the relative lack of fibrosis in VOH is incompletely understood. We hypothesized that reduced ischaemia propensity in VOH compared to POH accounted for the reduced replacement fibrosis, along with reduced reactive fibrosis. Rats with POH (ascending aortic banding) evolved into either compensated-concentric POH (POH-CLVH) or dilated cardiomyopathy (POH-DCM); they were compared to VOH (aorta-caval fistula). We quantified LV fibrosis, structural and haemodynamic factors of ischaemia propensity, and the activation of profibrotic pathways. Fibrosis in POH-DCM was severe, subendocardial and subepicardial, in contrast with subendocardial fibrosis in POH-CLVH and nearly no fibrosis in VOH. The propensity for ischaemia was more important in POH versus VOH, explaining different patterns of replacement fibrosis. LV collagen synthesis and maturation, and matrix metalloproteinase-2 expression, were more important in POH. The angiotensin II-transforming growth-factor ß axis was enhanced in POH, and connective tissue growth factor (CTGF) was overexpressed in all types of LVH. LV resistin expression was markedly elevated in POH, mildly elevated in VOH and independently reflected chronic ischaemic injury after myocardial infarction. In vitro, resistin is induced by angiotensin II and induces CTGF in cardiomyocytes. Based on these findings, we conclude that a reduced ischaemia propensity and attenuated upstream reactive fibrotic pathways account for the attenuated fibrosis in VOH versus POH.


Assuntos
Hemodinâmica , Isquemia Miocárdica/metabolismo , Resistina/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Colágeno/genética , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Resistina/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
5.
J Biol Chem ; 286(21): 18465-73, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21478152

RESUMO

Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and ß-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-ß-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Resistina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/biossíntese , Peptídeo Natriurético Encefálico/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ratos , Ratos Sprague-Dawley , Resistina/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Miosinas Ventriculares/biossíntese , Miosinas Ventriculares/genética
6.
Am J Physiol Heart Circ Physiol ; 302(7): H1423-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22307667

RESUMO

Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In naïve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in naïve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.


Assuntos
Infarto do Miocárdio/fisiopatologia , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular/fisiologia , Animais , Área Sob a Curva , Pressão Sanguínea/fisiologia , Volume Cardíaco/fisiologia , Diástole/fisiologia , Frequência Cardíaca/fisiologia , Contração Miocárdica/fisiologia , Curva ROC , Suínos , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/diagnóstico por imagem
7.
J Mol Cell Cardiol ; 51(2): 144-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549710

RESUMO

We have previously reported that resistin induces hypertrophy and impairs contractility in isolated rat cardiomyocytes. To examine the long-term cardiovascular effects of resistin, we induced in vivo overexpression of resistin using adeno-associated virus serotype 9 injected by tail vein in rats and compared to control animals. Ten weeks after viral injection, overexpression of resistin was associated with increased ratio of left ventricular (LV) weight/body weight, increased end-systolic LV volume and significant decrease in LV contractility, measured by the end-systolic pressure volume relationship slope in LV pressure volume loops, compared to controls. At the molecular level, mRNA expression of ANF and ß-MHC, and protein levels of phospholamban were increased in the resistin group without a change in the level of SERCA2a protein expression. Increased fibrosis by histology, associated with increased mRNA levels of collagen, fibronectin and connective tissue growth factor were observed in the resistin-overexpressing hearts. Resistin overexpression was also associated with increased apoptosis in vivo, along with an apoptotic molecular phenotype in vivo and in vitro. Resistin-overexpressing LV tissue had higher levels of TNF-α receptor 1 and iNOS, and reduced levels of eNOS. Cardiomyocytes overexpressing resistin in vitro produced larger amounts of TNFα in the medium, had increased phosphorylation of IκBα and displayed increased intracellular reactive oxygen species (ROS) content with increased expression and activity of ROS-producing NADPH oxidases compared to controls. Long-term resistin overexpression is associated with a complex phenotype of oxidative stress, inflammation, fibrosis, apoptosis and myocardial remodeling and dysfunction in rats. This phenotype recapitulates key features of diabetic cardiomyopathy. This article is part of Special Issue Item Group entitled "Possible Editorial".


Assuntos
Expressão Gênica/genética , Coração/fisiopatologia , Miocárdio/metabolismo , Resistina/genética , Resistina/metabolismo , Remodelação Ventricular/genética , Animais , Apoptose/genética , Biomarcadores/metabolismo , Glicemia/genética , Células Cultivadas , Fibrose/genética , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Mediadores da Inflamação/metabolismo , Masculino , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Heart Circ Physiol ; 301(3): H994-1003, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685270

RESUMO

Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Infarto do Miocárdio/etiologia , Traumatismo por Reperfusão Miocárdica/etiologia , Disfunção Ventricular Esquerda/etiologia , Análise de Variância , Animais , Aorta/cirurgia , Fator Natriurético Atrial/genética , Vasos Coronários/cirurgia , Progressão da Doença , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Peptídeo Natriurético Encefálico/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Volume Sistólico , Fatores de Tempo , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Função Ventricular Esquerda , Pressão Ventricular
9.
FASEB J ; 24(2): 451-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19825979

RESUMO

Despite a clear association between left ventricular (LV) mechanical dysfunction in end-stage heart failure and the incidence of arrhythmias, the majority of sudden cardiac deaths occur at earlier stages of disease development. The mechanisms by which structural, mechanical, and molecular alterations predispose to arrhythmias at the tissue level before the onset of LV dysfunction remain unclear. In a rat model of pressure overload hypertrophy (PoH) produced by ascending aortic banding, we correlated mechanical and structural changes measured in vivo with key electrophysiological changes measured ex vivo in the same animals. We found that action potential prolongation, a hallmark of electrical remodeling at the tissue level, is highly correlated with changes in LV wall thickness but not mechanical function. In contrast, conduction delays are not predicted by either mechanical or structural changes during disease development. Moreover, disrupted Cx43 phosphorylation at intermediate (increased) and late (decreased) stages of PoH are associated with moderate and severe conduction delays, respectively. Interestingly, the level of interaction between Cx43 and the cytoskeletal protein ZO-1 is exclusively decreased at the late stage of PoH. Closely coupled action potentials consistent with afterdepolarization-mediated triggered beats were readily observed in 6 of 15 PoH hearts but never in controls. Similarly, PoH (8/15) but not control hearts exhibited sustained episodes of ventricular tachycardia after rapid stimulation. The initiation and early maintenance of arrhythmias in PoH were formed by rapid and highly uniform activation wavefronts emanating from sites distal to the former site of stimulation. In conclusion, repolarization but not conduction delays are predicted by structural remodeling in PoH. Cx43 phosphorylation is disrupted at intermediate (increased) and late (decreased) stages, which are associated with conduction delays. Dephosphorylation of Cx43 is associated with loss of interaction with ZO-1 and severe conduction delays. Remodeling at all stages of PoH predisposes to triggers and focal arrhythmias.


Assuntos
Arritmias Cardíacas/etiologia , Cardiomegalia/fisiopatologia , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Progressão da Doença , Técnicas In Vitro , Modelos Animais , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/fisiopatologia
10.
Biophys J ; 98(10): 2063-71, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20483313

RESUMO

Chronically elevated levels of oxidative stress resulting from increased production and/or impaired scavenging of reactive oxygen species are a hallmark of mitochondrial dysfunction in left ventricular hypertrophy. Recently, oscillations of the mitochondrial membrane potential (DeltaPsi(m)) were mechanistically linked to changes in cellular excitability under conditions of acute oxidative stress produced by laser-induced photooxidation of cardiac myocytes in vitro. Here, we investigate the spatiotemporal dynamics of DeltaPsi(m) within the intact heart during ischemia-reperfusion injury. We hypothesize that altered metabolic properties in left ventricular hypertrophy modulate DeltaPsi(m) spatiotemporal properties and arrhythmia propensity.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cardiomegalia/fisiopatologia , Potencial da Membrana Mitocondrial/fisiologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Mitocôndrias Cardíacas , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia
11.
Cell Calcium ; 69: 46-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747251

RESUMO

Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.


Assuntos
Apoptose , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Sobrevivência Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
12.
Trends Cardiovasc Med ; 15(8): 297-302, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16297767

RESUMO

Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.


Assuntos
Sistema Cardiovascular/metabolismo , Transplante de Células-Tronco Hematopoéticas , Animais , Movimento Celular , Dextranos , Óxido Ferroso-Férrico , Humanos , Ferro , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Óxidos , Coloração e Rotulagem , Suspensões , Transdução Genética , Transfecção
13.
Biol. Res ; 54: 23-23, 2021. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1505793

RESUMO

The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Highlights - The Ras (Rat Sarcoma) gene family is a group of small G proteins - Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy - Ras directly affects cardiomyocyte physiological and pathological hypertrophy - Genetic alterations of Ras and its pathways result in various cardiac phenotypes? - Ras and its pathway are differentially regulated in acquired heart disease - Ras modulation is a promising therapeutic target in various cardiac conditions.


Assuntos
Humanos , Cardiopatias Congênitas , Síndrome de Noonan , Transdução de Sinais , Cardiomegalia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases
15.
J Clin Invest ; 124(3): 1329-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531548

RESUMO

Patients with Marfan syndrome (MFS), a multisystem disorder caused by mutations in the gene encoding the extracellular matrix (ECM) protein fibrillin 1, are unusually vulnerable to stress-induced cardiac dysfunction. The prevailing view is that MFS-associated cardiac dysfunction is the result of aortic and/or valvular disease. Here, we determined that dilated cardiomyopathy (DCM) in fibrillin 1-deficient mice is a primary manifestation resulting from ECM-induced abnormal mechanosignaling by cardiomyocytes. MFS mice displayed spontaneous emergence of an enlarged and dysfunctional heart, altered physical properties of myocardial tissue, and biochemical evidence of chronic mechanical stress, including increased angiotensin II type I receptor (AT1R) signaling and abated focal adhesion kinase (FAK) activity. Partial fibrillin 1 gene inactivation in cardiomyocytes was sufficient to precipitate DCM in otherwise phenotypically normal mice. Consistent with abnormal mechanosignaling, normal cardiac size and function were restored in MFS mice treated with an AT1R antagonist and in MFS mice lacking AT1R or ß-arrestin 2, but not in MFS mice treated with an angiotensin-converting enzyme inhibitor or lacking angiotensinogen. Conversely, DCM associated with abnormal AT1R and FAK signaling was the sole abnormality in mice that were haploinsufficient for both fibrillin 1 and ß1 integrin. Collectively, these findings implicate fibrillin 1 in the physiological adaptation of cardiac muscle to elevated workload.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Síndrome de Marfan/metabolismo , Mecanotransdução Celular , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Criança , Estudos Transversais , Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Quinase 1 de Adesão Focal/metabolismo , Humanos , Losartan/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Síndrome de Marfan/fisiopatologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho do Órgão , Receptor Tipo 1 de Angiotensina/metabolismo
16.
Heart ; 99(14): 992-1003, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23349349

RESUMO

Heart failure (HF) is a vicious circle in which an original insult leading to mechanical cardiac dysfunction initiates multiple morphological, biochemical and molecular pathological alterations referred to as cardiac remodelling. Remodelling leads to further deterioration of cardiac function and functional reserve. Interrupting or reversing cardiac remodelling is a major therapeutic goal of HF therapies. The role of molecules and molecular pathways in cardiac remodelling and HF has been extensively studied. Multiple approaches are now used or investigated in HF therapy, including pharmacological therapy, device therapy, gene therapy, cell therapy and biological therapy targeting cytokines and growth factors. This review explores the molecular targets and molecular bases of current and prospective therapies in HF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Guias de Prática Clínica como Assunto , Humanos , Prognóstico
17.
J Am Soc Echocardiogr ; 26(8): 910-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23706342

RESUMO

BACKGROUND: Clinical two-dimensional (2D) and clinical three-dimensional echocardiography are validated against cardiac magnetic resonance imaging (CMR), the gold standard for left ventricular (LV) volume measurement. In rodents, there is no widely accepted echocardiographic measure of whole LV volumes, and CMR measurements vary among studies. The aim of this study was to compare LV volumes by 2D echocardiography (using a hemisphere-cylinder [HC] model) with HC and full-volume (FV) CMR in normal and diseased rats to measure the impact of geometric models and imaging modalities. METHODS: Rats (n = 27) underwent ascending aortic banding, myocardial infarction induction by either permanent left anterior descending coronary artery ligation or ischemia-reperfusion, and sham thoracotomy. Subsequently, end-diastolic volume, end-systolic volume, and ejection fraction were measured using an HC 2D echocardiographic model combining parasternal short-axis and long-axis measurements, and these were compared with HC and FV CMR. RESULTS: Diseased groups showed LV dilatation and dysfunction. HC echocardiographic and FV CMR measures of end-diastolic volume, end-systolic volume, and ejection fraction were correlated. On Bland-Altman plots, end-diastolic volumes were concordant between both methods, while HC echocardiography underestimated end-systolic volumes, resulting in a modest overestimation of ejection fractions compared with FV CMR. Other 2D echocardiographic geometric models offered less concordance with FV CMR than HC. HC CMR overestimated LV volumes compared with FV CMR, while HC echocardiography underestimated HC CMR volumes. Echocardiography underestimated corresponding LV dimensions by CMR, particularly short axis. CONCLUSIONS: Concordant measures of LV volume and function were obtained using (1) a relatively simple HC model of the left ventricle inclusive of two orthogonal 2D echocardiographic planes and (2) FV CMR in normal and diseased rats. The HC model appeared to compensate for the underestimation of LV dimensions by echocardiography.


Assuntos
Ecocardiografia Tridimensional/métodos , Ecocardiografia/métodos , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico , Volume Sistólico , Disfunção Ventricular Esquerda/diagnóstico , Animais , Masculino , Infarto do Miocárdio/complicações , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Disfunção Ventricular Esquerda/etiologia
18.
Ann N Y Acad Sci ; 1254: 42-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22548568

RESUMO

Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quimiocina CXCL12/genética , AMP Cíclico/metabolismo , Terapia Genética/tendências , Vetores Genéticos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Proteína SUMO-1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Pesquisa Translacional Biomédica
19.
J Appl Physiol (1985) ; 113(8): 1267-84, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22923502

RESUMO

Load-adjusted measures of left ventricle (LV) systolic performance are limited by dependence on LV stiffness and afterload. To our knowledge, no stiffness-adjusted and afterload-adjusted indicator was tested in models of pressure (POH) and volume overload hypertrophy (VOH). We hypothesized that wall stress reflects changes in loading, incorporating chamber stiffness and afterload; therefore, stroke volume-to-wall stress ratio more accurately reflects systolic performance. We used rat models of POH (ascending aortic banding) and VOH (aorto-cava shunt). Animals underwent echocardiography and pressure-volume analysis at baseline and dobutamine challenge. We achieved extreme bidirectional alterations in LV systolic performance, end-systolic elastance (Ees), passive stiffness, and arterial elastance (Ea). In POH with LV dilatation and failure, some load-independent indicators of systolic performance remained elevated compared with controls, while some others failed to decrease with wide variability. In VOH, most, but not all indicators, including LV ejection fraction, were significantly reduced compared with controls, despite hyperdynamic circulation, lack of heart failure, and preserved contractile reserve. We related systolic performance to Ees adjusted for Ea and LV passive stiffness in multivariate models. Calculated residual Ees was not reduced in POH with heart failure and was reduced in VOH, while it positively correlated to dobutamine dose. Conversely, stroke volume-to-wall stress ratio was normal in compensated POH, markedly decreased in POH with heart failure, and, in contrast with LV ejection fraction, normal in VOH. Our results support stroke volume-to-wall stress ratio as a load-adjusted and stiffness-adjusted indicator of systolic function in models of POH and VOH.


Assuntos
Coração/fisiologia , Volume Sistólico/fisiologia , Sístole/fisiologia , Animais , Artérias/efeitos dos fármacos , Artérias/fisiologia , Artérias/fisiopatologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Dobutamina/farmacologia , Ecocardiografia/métodos , Coração/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Pressão , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia , Volume Sistólico/efeitos dos fármacos , Sístole/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
20.
Int J Cardiovasc Imaging ; 28(7): 1671-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22231467

RESUMO

The aim of this study was to reveal the temporal and spatial changes of strain parameters during the progression of chronic coronary ischemia. Fourteen pigs received occluder implantation to create gradual ischemia (CI), while six pigs underwent a sham surgery (Control). Six pigs after myocardial infarction were also studied (MI). Strain analysis was performed using a speckle-tracking algorithm. Eleven of the 14 animals with occluder implantation had total occlusion of the left anterior descending artery with collaterals at 1 month (early occlusion group), whereas three pigs had occlusion at 3 months (late occlusion group). Both radial strain (RS) and circumferential strain (CS) of ischemic area deteriorated at 1 month in the early occlusion group and remained at the same level throughout the remaining 2 months of the experiment. In the late occlusion group, RS gradually declined, while CS took the same course as Control until the 2 month time point. Thereafter, both metrics reached the same level as the early occlusion group at the time of occlusion. Interestingly, RS in the remote area decreased moderately, whereas CS remained normal in CI pigs. The comparison between CI and MI revealed preserved CS at the ischemic area in CI pigs. Both RS and CS deteriorate by the time total coronary occlusion was established and remain at the same level thereafter. Altered RS in the remote area may be an indicator of remodeling in the non-ischemic area, whereas CS may be useful for distinguishing between transmural and non-transmural scar.


Assuntos
Contração Miocárdica , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Função Ventricular Esquerda , Algoritmos , Animais , Fenômenos Biomecânicos , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia Doppler , Hemodinâmica , Interpretação de Imagem Assistida por Computador , Infarto do Miocárdio/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estresse Mecânico , Volume Sistólico , Suínos , Fatores de Tempo , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa