Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cytotherapy ; 19(3): 419-432, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28017598

RESUMO

Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm3) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm3) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 104 cells/cm2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 104 cells/cm2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with that obtained in Cytodex 3 cultures and higher than MNL cultures. In conclusion, biodegradable LPCL can be used to efficiently expand a variety of MSC lines in stirred scalable reactors in a cost-effective manner while maintaining surface markers expression, differentiation capability and high levels of cytokine secretion. This study is the first step in testing these cell-biodegradable porous MC aggregates for tissue engineering and cell therapy, such as bone and cartilage regeneration, or wound healing.


Assuntos
Implantes Absorvíveis , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células , Citocinas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Alicerces Teciduais/química , Reatores Biológicos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Meios de Cultura/metabolismo , Dextranos/química , Humanos , Teste de Materiais , Microtecnologia/instrumentação , Engenharia Tecidual/métodos
2.
Biochem Biophys Res Commun ; 473(3): 764-8, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26385176

RESUMO

Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles of such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Humanos , Miócitos Cardíacos/citologia , Células-Tronco/citologia
3.
Cytotherapy ; 17(2): 163-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25304664

RESUMO

BACKGROUND AIMS: Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. METHODS: MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. RESULTS: Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. CONCLUSIONS: We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process.


Assuntos
Reatores Biológicos , Dextranos , Células-Tronco Mesenquimais/citologia , Microesferas , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Meios de Cultura , Glucose , Humanos , Transplante de Células-Tronco Mesenquimais
5.
Stem Cell Res Ther ; 12(1): 113, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546754

RESUMO

BACKGROUND: Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells. METHODS: We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency. RESULTS: We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1. CONCLUSION: Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Cultivadas , Reprogramação Celular , Corantes Fluorescentes , Humanos , Transcriptoma
6.
Biotechnol J ; 13(4): e1700567, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330927

RESUMO

Anticipated shortages in donated blood supply have prompted investigation of alternative approaches for in vitro production of red blood cells (RBCs), such as expansion of conditional immortalization erythroid progenitors. However, there is a bioprocessing challenge wherein factors promoting maximal cell expansion and growth-limiting inhibitory factors are yet to be investigated. The authors use an erythroblast cell line (ImEry) derived from immortalizing CD71+CD235a+ erythroblast from adult peripheral blood for optimization of expansion culture conditions. Design of experiments (DOE) is used in media formulation to explore relationships and interactive effects between factors which affect cell expansion. Our in-house optimized medium formulation produced significantly higher cell densities (3.62 ± 0.055) × 106 cells mL-1 , n = 3) compared to commercial formulations (2.07 ± 0.055) × 106 cells mL-1 , n = 3; at 209 h culture). Culture media costs per unit of blood is shown to have a 2.96-3.09 times cost reduction. As a proof of principle for scale up, ImEry are expanded in a half-liter stirred-bioreactor under controlled settings. Growth characteristics, metabolic, and molecular profile of the cells are evaluated. ImEry has identical O2 binding capacity to adult erythroblasts. Amino acid supplementation results in further yield improvements. The study serves as a first step for scaling up erythroblast expansion in controlled bioreactors.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Meios de Cultura Livres de Soro/química , Eritroblastos/citologia , Reatores Biológicos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Eritroblastos/química , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteína bcl-X/genética
7.
J Biomed Mater Res B Appl Biomater ; 106(5): 1887-1896, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28941021

RESUMO

Functionalizing medical devices with polypeptides to enhance their performance has become important for improved clinical success. The extracellular matrix (ECM) adhesion protein vitronectin (VN) is an effective coating, although the chemistry used to attach VN often reduces its bioactivity. In vivo, VN binds the ECM in a sequence-dependent manner with heparan sulfate (HS) glycosaminoglycans. We reasoned therefore that sequence-based affinity chromatography could be used to isolate a VN-binding HS fraction (HS9) for use as a coating material to capture VN onto implant surfaces. Binding avidity and specificity of HS9 were confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR)-based assays. Plasma polymerization of allylamine (AA) to tissue culture-treated polystyrene (TCPS) was then used to capture and present HS9 as determined by radiolabeling and ELISA. HS9-coated TCPS avidly bound VN, and this layered surface supported the robust attachment, expansion, and maintenance of human pluripotent stem cells. Compositional analysis demonstrated that 6-O- and N-sulfation, as well as lengths greater than three disaccharide units (dp6) are critical for VN binding to HS-coated surfaces. Importantly, HS9 coating reduced the threshold concentration of VN required to create an optimally bioactive surface for pluripotent stem cells. We conclude that affinity-purified heparan sugars are able to coat materials to efficiently bind adhesive factors for biomedical applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1887-1896, 2018.


Assuntos
Materiais Revestidos Biocompatíveis/química , Proteínas da Matriz Extracelular/química , Heparitina Sulfato/química , Células-Tronco Pluripotentes/metabolismo , Vitronectina/química , Adesão Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes/citologia
8.
Tissue Eng Part C Methods ; 22(8): 765-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392822

RESUMO

In vitro generation of red blood cells (RBCs) from human embryonic stem cells and human induced pluripotent stem cells appears to be a promising alternate approach to circumvent shortages in donor-derived blood supplies for clinical applications. Conventional methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) rely on embryoid body (EB) formation and/or coculture with xenogeneic cell lines. However, most current methods for hPSC expansion and EB formation are not amenable for scale-up to levels required for large-scale RBC generation. Moreover, differentiation methods that rely on xenogenic cell lines would face obstacles for future clinical translation. In this study, we report the development of a serum-free and chemically defined microcarrier-based suspension culture platform for scalable hPSC expansion and EB formation. Improved survival and better quality EBs generated with the microcarrier-based method resulted in significantly improved mesoderm induction and, when combined with hematopoietic differentiation, resulted in at least a 6-fold improvement in hematopoietic precursor expansion, potentially culminating in a 80-fold improvement in the yield of RBC generation compared to a conventional EB-based differentiation method. In addition, we report efficient terminal maturation and generation of mature enucleated RBCs using a coculture system that comprised primary human mesenchymal stromal cells. The microcarrier-based platform could prove to be an appealing strategy for future scale-up of hPSC culture, EB generation, and large-scale generation of RBCs under defined and xeno-free conditions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Corpos Embrioides/citologia , Eritrócitos/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Humanos
9.
Biores Open Access ; 4(1): 242-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26309800

RESUMO

Human pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously, we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions. In this article, we further improved the MC system into a defined xeno-free MC one in which the MCs are coated with recombinant human laminin-521 (LN521) alone without additional positive charge. The high binding affinity of the LN521 to cell integrins enables efficient initial HES-3 cell attachment (87%) and spreading (85%), which leads to generation of cells/MC aggregates (400 µm in size) and high cell yields (2.4-3.5×10(6) cells/mL) within 7 days in agitated plate and scalable spinner cultures. The universality of the system was demonstrated by propagation of an induced pluripotent cells line in this defined MC system. Long-term pluripotent (>90% expression Tra-1-60) cell expansion and maintenance of normal karyotype was demonstrated after 10 cell passages. Moreover, tri-lineage differentiation as well as directed differentiation into cardiomyocytes was achieved. The new LN521-based MC system offers a defined, xeno-free, GMP-compatible, and scalable bioprocessing platform for the production of hPSC with the quantity and quality compliant for clinical applications. Use of LN521 on MCs enabled a 34% savings in matrix and media costs over monolayer cultures to produce 10(8) cells.

10.
Tissue Eng Part C Methods ; 20(3): 227-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23777438

RESUMO

Large quantities of human pluripotent stem cells (hPSCs) needed for therapeutic applications can be grown in scalable suspended microcarrier cultures. These microcarriers are coated with animal or human extracellular matrix (ECM) proteins to promote cell growth and maintain pluripotency. However, the coating is costly for large-scale cultures and it presents safety risks. This study demonstrates that hPSCs can be propagated on noncoated positively charged cellulose microcarriers in a serum-free medium containing the ROCK inhibitor, (Y27632) or myosin inhibitor, Blebbistatin. In the presence of these two inhibitors, myosin phosphatase 1 and myosin light chain 2 were dephosphorylated suggesting that reduced myosin contractility is responsible for hPSC survival and growth on ECM coating-free microcarriers. Cells propagated on the noncoated microcarriers for 12 passages maintained their pluripotency and karyotype stability. Scalability was demonstrated by achieving a cell concentration of 2.3×106 cells/mL with 11.5-fold expansion (HES-3) in a 100-mL spinner flask. The differentiation capability of these cells toward three primary lineages is demonstrated via in vitro embryoid bodies and in vivo teratoma formations. Moreover, the directed differentiation to polysialylated neuronal cell adhesion molecule-positive (PSA-NCAM+) neural progenitors produced high cell concentrations (9.1±1.2×106 cells/mL) with a cell yield of 412±77 neural progenitor cells per seeded HES-3 and a PSA-NCAM expression level of 91±1.1%. This defined serum- and coating-free scalable microcarrier culturing system is a safer and less expensive method for generating large amounts of hPSCs for cell therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Materiais Revestidos Biocompatíveis/farmacologia , Matriz Extracelular/metabolismo , Microesferas , Miosina Tipo II/metabolismo , Células-Tronco Pluripotentes/citologia , Quinases Associadas a rho/antagonistas & inibidores , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
11.
Stem Cell Res Ther ; 5(5): 110, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25223792

RESUMO

INTRODUCTION: Myocardial infarction is accompanied by a significant loss of cardiomyocytes (CMs). Functional CMs, differentiated from human embryonic stem cells (hESCs), offer a potentially unlimited cell source for cardiac disease therapies and regenerative cardiovascular medicine. However, conventional production methods on monolayer culture surfaces cannot adequately supply the large numbers of cells required for such treatments. To this end, an integrated microcarrier (MC) bioprocessing system for hESC propagation and subsequent CM differentiation was developed. METHODS: Production of hESC-derived CMs was initially established in monolayer cultures. This control condition was compared against hESC expansion on laminin-coated MC with cationic surface charge, in a stirred serum-free defined culture. Following expansion, the hESC/MC aggregates were placed in a CM differentiation medium, using Wnt signalling modulators in four different culture conditions. This process eliminated the need for manual colony cutting. The final optimized protocol was tested in stirred spinner flasks, combining expansion and differentiation on the same MC, with only media changes during the culture process. RESULTS: In the propagation phase, a 15-fold expansion of viable pluripotent HES-3 was achieved, with homogeneous sized aggregates of 316 ± 11 µm. Of the four differentiation conditions, stirred spinner flask cultures (MC-Sp) provided the best controlled aggregate sizes and yielded 1.9 × 106 CM/ml, as compared to 0.5 × 106 CM/ml using the monolayer cultures method: a four-fold increase in CM/ml. Similar results (1.3 × 106 CM/ml) were obtained with an alternative hESC H7 line. The hESC/MC-derived CM expressed cardiac-specific transcription factors, structural, ion channel genes, and exhibited cross-striations of sarcomeric proteins, thus confirming their cardiac ontogeny. Moreover, E-4031 (0.3 µM) prolonged the QT-interval duration by 40% and verapamil (3 µM) reduced it by 45%, illustrating the suitability of these CM for pharmacological assays. CONCLUSIONS: We have demonstrated a robust and scalable microcarrier system for generating hESC-derived CM. This platform is enabled by defined microcarrier matrices and it integrates cell propagation and differentiation within a continuous process, in serum-free culture media. It can generate significant numbers of CM, which are potentially suitable for future clinical therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Humanos , Células-Tronco Pluripotentes/citologia
12.
Stem Cells Dev ; 23(14): 1688-703, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24641164

RESUMO

The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 µm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 µm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/efeitos dos fármacos , Laminina/administração & dosagem , Células-Tronco Pluripotentes/efeitos dos fármacos , Vitronectina/administração & dosagem , Reatores Biológicos , Proliferação de Células/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Vesículas Revestidas/química , Meios de Cultura Livres de Soro , Células-Tronco Embrionárias/citologia , Matriz Extracelular/metabolismo , Humanos , Laminina/química , Laminina/metabolismo , Lisina/química , Microesferas , Células-Tronco Pluripotentes/citologia , Vitronectina/química , Vitronectina/metabolismo
13.
Biotechnol Adv ; 31(7): 1032-46, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23531528

RESUMO

Mesenchymal stem cells (MSCs) have recently made significant progress with multiple clinical trials targeting modulation of immune responses, regeneration of bone, cartilage, myocardia, and diseases like Metachromatic leukodystrophy and Hurler syndrome. On the other hand, the use of human embryonic and induced pluripotent stem cells (hPSCs) in clinical trials is rather limited mainly due to safety issues. Only two clinical trials, retinal pigment epithelial transplantation and treatment of spinal cord injury were reported. Cell doses per treatment can range between 50,000 and 6 billion cells. The current 2-dimensional tissue culture platform can be used when low cell doses are needed and it becomes impractical when doses above 50 million are needed. This demand for future cell therapy has reinvigorated interests in the use of the microcarrier platform for generating stem cells in a scalable 3-dimensional manner. Microcarriers developed for culturing adherent cell lines in suspension have been used mainly in vaccine production and research purposes. Since MSCs grow as monolayers similar to conventional adherent cell lines, adapting MSCs to a microcarrier based expansion platform has been progressing rapidly. On the other hand, establishing a robust microcarrier platform for hPSCs is more challenging as these cells grow in multilayer colonies on extracellular matrices and are more susceptible to shear stress. This review describes properties of commercially available microcarriers developed for cultivation of anchorage dependent cells and present current achievements for expansion and differentiation of stem cells. Key issues such as microcarrier properties and coatings, cell seeding conditions, medium development and improved bioprocess parameters needed for optimal stem cell systems are discussed.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Biotecnologia , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
14.
Biores Open Access ; 2(2): 84-97, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593561

RESUMO

Stirred microcarrier (MC) culture has been suggested as the method of choice for supplying large volumes of mesenchymal stem cells (MSCs) for bone tissue engineering. In this study, we show that in addition to the improvement in cell expansion capacity, MSCs propagated and harvested from MC culture also demonstrate higher osteogenic potency when differentiated in vivo or in vitro in three-dimensional (3D) scaffold cultures as compared with traditional monolayer (MNL) cultures. Cytodex 3 microcarrier-expanded human fetal MSC (hfMSC) cultures (MC-hfMSCs) achieved 12- to 16-fold expansion efficiency (6×10(5)-8×10(5) cells/mL) compared to 4- to 6-fold (1.2×10(5)-1.8×10(5) cells/mL) achieved by traditional MNL-expanded hfMSC culture (MNL-hfMSCs; p<0.05). Both MC-hfMSCs and MNL-hfMSCs maintained similar colony-forming capacity, doubling times, and immunophenotype postexpansion. However, when differentiated under in vitro two-dimensional (2D) osteogenic conditions, MC-hfMSCs exhibited a 45-fold reduction in alkaline phosphatase level and a 37.5% decrease in calcium deposition compared with MNL-hfMSCs (p<0.05). Surprisingly, when MC-hfMSCs and MNL-hfMSCs were seeded on 3D macroporous scaffold culture or subcutaneously implanted into nonobese diabetic/severe combined immunodeficient mice, MC-hfMSCs deposited 63.5% (p<0.05) more calcium and formed 47.2% (p<0.05) more bone volume, respectively. These results suggest that the mode of hfMSC growth in the expansion phase affects the osteogenic potential of hfMSCs differently in various differentiation platforms. In conclusion, MC cultures are advantageous over MNL cultures in bone tissue engineering because MC-hfMSCs have improved cell expansion capacity and exhibit higher osteogenic potential than MNL-hfMSCs when seeded in vitro into 3D scaffolds or implanted in vivo.

15.
Stem Cells Dev ; 21(10): 1701-15, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22034857

RESUMO

While defining the environment for human embryonic stem cell (hESC) culture on 2-dimensional (2D) surfaces has made rapid progress, the industrial-scale implementation of this technology will benefit from translating this knowledge into a 3-dimensional (3D) system, thus enabling better control, automation, and volumetric scale-up in bioreactors. The current study describes a system with defined conditions that are capable of supporting the long-term 2D culture of hESCs and the transposing of these conditions to 3D microcarrier (MC) cultures. Vitronectin (VN) and laminin (LN) were chosen as matrices for the long-term propagation of hESCs in a defined culture medium (STEMPRO(®)) for conventional 2D culture. Adsorption of these proteins onto 2D tissue culture polystyrene (TCPS) indicated that surface density saturation of 510 and 850 ng/cm(2) for VN and LN, respectively, was attained above 20 µg/mL deposition solution concentration. Adsorption of these proteins onto spherical (97±10 µm), polystyrene MC followed a similar trend and coating surface densities of 450 and 650 ng/cm(2) for VN and LN, respectively, were used to support hESC propagation. The long-term expansion of hESCs was equally successful on TCPS and MC, with consistently high expression (>90%) of pluripotent markers (OCT-4, MAB-84, and TRA-1-60) over 20 passages and maintenance of karyotypic normality. The average fold increase in cell numbers on VN-coated MC per serial passage was 8.5±1.0, which was similar to LN-coated MC (8.5±0.9). Embryoid body differentiation assays and teratoma formation confirmed that hESCs retained the ability to differentiate into lineages of all 3 germ layers, thus demonstrating the first translation to a fully defined MC-based environment for the expansion of hESCs.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias/fisiologia , Laminina/metabolismo , Vitronectina/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Adesão Celular , Diferenciação Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Células-Tronco Embrionárias/transplante , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cariótipo , Laminina/química , Camundongos , Camundongos SCID , Neoplasias Experimentais/patologia , Propriedades de Superfície , Teratoma/patologia , Regulação para Cima , Vitronectina/química
16.
Stem Cell Res ; 7(2): 97-111, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763618

RESUMO

A variety of microcarriers may be used for the expansion of human embryonic stem cells (hESC) for cell therapy applications. This study investigated the effects of 10 types of microcarriers on hESC attachment efficiency, growth and pluripotency. High attachment efficiency was observed on uncoated microcarriers, however poor cell growth and/or gradual loss of pluripotency occurred during continuous passaging. Coating of the microcarriers with Matrigel resulted in higher cell yields and stable pluripotent states for at least three passages. Positively charged cylindrical cellulose microcarriers (DE52, DE53 and QA52) and large (190 µm) positively charged spherical microcarriers (Cytodex 1) exhibited high cell expansion potential and levels of pluripotency. Lower cell yields were obtained using smaller diameter spherical (65 µm and 10 µm) or macroporous beads. Instead of Matrigel, laminin coated microcarriers (DE53 and Cytodex 1) are capable of supporting the long term propagation and pluripotency of HES-2 and HES-3 cell lines. HES-2 cell line which was shown earlier to be shear resistant achieved similar cell growth and expression of pluripotent markers when cultured on both Matrigel (84% Tra-1-60, 1.43×10(6) cells/ml) and laminin (74% Tra-1-60, 1.37×10(6) cells/ml) coated microcarriers in spinner flasks. In contrast, HES-3 exhibited a decrease in cell yield, viability and pluripotent markers on laminin as compared with Matrigel coated microcarriers possibly due to shear sensitivity. Conventional microcarriers intended for propagation of mammalian cells are not suitable for long term propagation of hESC. Matrigel or laminin coating is essential for stable long term propagation of hESC on a variety of microcarriers.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Meios de Cultura , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Humanos , Replicação Viral
17.
J Microbiol ; 47(1): 1-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229485

RESUMO

Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.


Assuntos
Adaptação Biológica/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Ciclo do Ácido Cítrico/genética , Regulação para Baixo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Fermentação/genética , Perfilação da Expressão Gênica , Glucose/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
Biotechnol Bioeng ; 92(2): 183-8, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15977252

RESUMO

Pyruvate decarboxylase (PDC) catalyses the synthesis of asymmetric carbinols, e.g., chiral precursors for pharmaceuticals such as ephedrine and pseudoephedrine. The production of PDC by Candida utilis in a minimal medium was improved by manipulating the pH during fermentation in a 5 L bioreactor. At an aeration rate of 0.1 vvm with a stirrer speed of 300 rpm at constant pH 6, a specific PDC activity of 141 U/g dry cell weight (DCW) was achieved (average of two fermentations +/-13%). By allowing the yeast to acidify the growth medium from pH 6 to 2.9, the final specific PDC activity increased by a factor of 2.7 to 385 U/g DCW (average from 4 fermentations +/-16%). The effect of this pH drift on PDC production was confirmed by another experiment with a manual shift of pH from 6 to 3 by addition of 5 M sulfuric acid. The final PDC activity was 392 U/g DCW (average from two fermentations +/-5%). However, experiments with constant pH of 6, 5, 4, or 3 resulted in average specific activities of only 102 to 141 U/g DCW, suggesting that a transitional pH change rather than the absolute pH value was responsible for the increased specific PDC activity.


Assuntos
Reatores Biológicos/microbiologia , Candida/química , Candida/enzimologia , Técnicas de Cultura de Células/métodos , Piruvato Descarboxilase/biossíntese , Piruvato Descarboxilase/química , Candida/crescimento & desenvolvimento , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Piruvato Descarboxilase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa