Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Pept Sci ; 29(8): e3482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36739581

RESUMO

Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.


Assuntos
Peptídeos , Proteínas , Estados Unidos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Composição de Medicamentos
2.
J Membr Biol ; 254(1): 75-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564914

RESUMO

The use of designed antimicrobial peptides as drugs has been impeded by the absence of simple sequence-structure-function relationships and design rules. The likely cause is that many of these peptides permeabilize membranes via highly disordered, heterogeneous mechanisms, forming aggregates without well-defined tertiary or secondary structure. We suggest that the combination of high-throughput library screening with atomistic computer simulations can successfully address this challenge by tuning a previously developed general pore-forming peptide into a selective pore-former for different lipid types. A library of 2916 peptides was designed based on the LDKA template. The library peptides were synthesized and screened using a high-throughput orthogonal vesicle leakage assay. Dyes of different sizes were entrapped inside vesicles with varying lipid composition to simultaneously screen for both pore size and affinity for negatively charged and neutral lipid membranes. From this screen, nine different LDKA variants that have unique activity were selected, sequenced, synthesized, and characterized. Despite the minor sequence changes, each of these peptides has unique functional properties, forming either small or large pores and being selective for either neutral or anionic lipid bilayers. Long-scale, unbiased atomistic molecular dynamics (MD) simulations directly reveal that rather than rigid, well-defined pores, these peptides can form a large repertoire of functional dynamic and heterogeneous aggregates, strongly affected by single mutations. Predicting the propensity to aggregate and assemble in a given environment from sequence alone holds the key to functional prediction of membrane permeabilization.


Assuntos
Peptídeos Antimicrobianos/química , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos
3.
J Am Chem Soc ; 141(12): 4839-4848, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30839209

RESUMO

In the age of failing small-molecule antibiotics, tapping the near-infinite structural and chemical repertoire of antimicrobial peptides (AMPs) offers one of the most promising routes toward developing next-generation antibacterial compounds. One of the key impediments en route is the lack of methodologies for systematic rational design and optimization of new AMPs. Here we present a new simulation-guided rational design approach and apply it to develop a potent new AMP. We show that unbiased atomic detail molecular dynamics (MD) simulations are able to predict structures formed by evolving peptide designs enabling structure-based rational fine-tuning of functional properties. Starting from a 14-residue poly leucine template we demonstrate the design of a minimalistic potent new AMP. Consisting of only four types of amino acids (LDKA), this peptide forms large pores in microbial membranes at very low peptide-to-lipid ratios (1:1000) and exhibits low micromolar activity against common Gram-positive and Gram-negative pathogenic bacteria. Remarkably, the four amino acids were sufficient to encode preferential poration of bacterial membranes with negligible damage to red blood cells at bactericidal concentrations. As the sequence is too short to span cellular membranes, pores are formed by stacking of channels in each bilayer leaflet.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Porosidade , Conformação Proteica
4.
Chemistry ; 22(29): 9958-61, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27224887

RESUMO

Using unbiased atomic-detailed molecular dynamics simulations, the C-terminal fragments of TDP-43 are observed to aggregate and form disordered-toroidal pores in a lipid bilayer. Cytotoxicity of TDP-43 may be inferred from the observation that the membrane pores catalyze lipid flip-flop between bilayer leaflets and conduct water at high rates.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Água/química , Proteínas de Ligação a DNA/metabolismo , Simulação de Dinâmica Molecular
5.
Biochim Biophys Acta ; 1838(9): 2243-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769159

RESUMO

Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Meliteno/química , Absorção , Sequência de Aminoácidos , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Meliteno/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína
6.
Chemistry ; 19(41): 13680-91, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24092541

RESUMO

We demonstrate herein that wild-type cytochrome P450 BM3 can recognize non-natural substrates, such as fluorinated C12 -C15 chain-length fatty acids, and show better catalysis for their efficient conversion. Although the binding affinities for fluorinated substrates in the P450 BM3 pocket are marginally lower than those for non-fluorinated substrates, spin-shift measurements suggest that fluoro substituents at the ω-position can facilitate rearrangement of the dynamic structure of the bulk-water network within the hydrophobic pocket through a micro desolvation process to expel the water ligand of the heme iron that is present in the resting state. A lowering of the Michaelis-Menten constant (Km ), however, indicates that fluorinated fatty acids are indeed better substrates compared with their non-fluorinated counterparts. An enhancement of the turnover frequencies (kcat ) for electron transfer from NADPH to the heme iron and for CH bond oxidation by compound I (Cpd I) to yield the product suggests that the activation energies associated with going from the enzyme-substrate (ES state) to the corresponding transition state (ES(≠) state) are significantly lowered for both steps in the case of the fluorinated substrates. Delicate control of the regioselectivity by the fluorinated terminal methyl groups of the C12 -C15 fatty acids has been noted. Despite the fact that residues Arg47/Tyr51/Ser72 exert significant control over the hydroxylation of the subterminal carbon atoms toward the hydrocarbon tail, the fluorine substituent(s) at the ω-position affects the regioselective hydroxylation. For substrate hydroxylation, we have found that fluorinated lauric acids probably give a better structural fit for the heme pocket than fluorinated pentadecanoic acid, even though pentadecanoic acid is by far the best substrate among the reported fatty acids. Interestingly, 12-fluorododecanoic acid, with only one fluorine atom at the terminal methyl group, exhibits a comparable turnover frequency to that of pentadecanoic acid. Thus, fluorination of the terminal methyl group introduces additional interactions of the substrate within the hydrophobic pocket, which influence the electron transfers for both dioxygen activation and the controlled oxidation of aliphatics mediated by high-valent oxoferryl species.


Assuntos
Ácidos Graxos/química , Ácidos Láuricos/química , Sistema Enzimático do Citocromo P-450 , Fluorocarbonos , Halogenação , Ligação de Hidrogênio , Hidroxilação , Oxirredução
7.
Biotechnol Bioeng ; 110(4): 1078-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23192283

RESUMO

Copper(II) 2,2'-bipyridine (Cu(II) (bpy))-catalyzed alkaline hydrogen peroxide (AHP) pretreatment was performed on three biomass feedstocks including alkali pre-extracted switchgrass, silver birch, and a hybrid poplar cultivar. This catalytic approach was found to improve the subsequent enzymatic hydrolysis of plant cell wall polysaccharides to monosaccharides for all biomass types at alkaline pH relative to uncatalyzed pretreatment. The hybrid poplar exhibited the most significant improvement in enzymatic hydrolysis with monomeric sugar release and conversions more than doubling from 30% to 61% glucan conversion, while lignin solubilization was increased from 36.6% to 50.2% and hemicellulose solubilization was increased from 14.9% to 32.7%. It was found that Cu(II) (bpy)-catalyzed AHP pretreatment of cellulose resulted in significantly more depolymerization than uncatalyzed AHP pretreatment (78.4% vs. 49.4% decrease in estimated degree of polymerization) and that carboxyl content the cellulose was significantly increased as well (fivefold increase vs. twofold increase). Together, these results indicate that Cu(II) (bpy)-catalyzed AHP pretreatment represents a promising route to biomass deconstruction for bioenergy applications.


Assuntos
Álcalis/química , Cobre/química , Peróxido de Hidrogênio/química , Biomassa , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Viscosidade
8.
ACS Infect Dis ; 9(4): 952-965, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961222

RESUMO

Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Bactérias , Biofilmes , Anti-Infecciosos/farmacologia
9.
Methods Mol Biol ; 2405: 115-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298811

RESUMO

Understanding the interactions between peptides and lipid membranes could not only accelerate the development of antimicrobial peptides as treatments for infections but also be applied to finding targeted therapies for cancer and other diseases. However, designing biophysical experiments to study molecular interactions between flexible peptides and fluidic lipid membranes has been an ongoing challenge. Recently, with hardware advances, algorithm improvements, and more accurate parameterizations (i.e., force fields), all-atom molecular dynamics (MD) simulations have been used as a "computational microscope" to investigate the molecular interactions and mechanisms of membrane-active peptides in cell membranes (Chen et al., Curr Opin Struct Biol 61:160-166, 2020; Ulmschneider and Ulmschneider, Acc Chem Res 51(5):1106-1116, 2018; Dror et al., Annu Rev Biophys 41:429-452, 2012). In this chapter, we describe how to utilize MD simulations to predict and study peptide dynamics and how to validate the simulations by circular dichroism, intrinsic fluorescent probe, membrane leakage assay, electrical impedance, and isothermal titration calorimetry. Experimentally validated MD simulations open a new route towards peptide design starting from sequence and structure and leading to desirable functions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Membrana Celular/metabolismo , Lipídeos/análise , Membranas , Peptídeos/metabolismo
10.
Curr Opin Biotechnol ; 75: 102718, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395425

RESUMO

As we learn more about how peptide structure and activity are related, we anticipate that antimicrobial peptides will be engineered to have strong potency and distinct functions and that synthetic peptides will have new biomedical applications, such as treatments for emerging infectious diseases. As a result of the enormous number of possible amino acid sequences and the low-throughput nature of antimicrobial peptide assays, computational tools for peptide design and optimization are needed for direct experimentation toward obtaining functional sequences. Recent developments in computational tools have improved peptide design, saving labor, reagents, costs, and time. At the same time, improvements in peptide synthesis and experimental platforms continue to reduce the cost and increase the throughput of peptide-drug screening. In this review, we discuss the current methods of peptide design and engineering, including in silico methods and peptide synthesis and screening, and highlight areas of potential improvement.


Assuntos
Peptídeos Antimicrobianos , Peptídeos , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , Peptídeos/química
11.
Adv Sci (Weinh) ; 9(13): e2105506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246961

RESUMO

Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Peptídeos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Antibiotics (Basel) ; 9(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941022

RESUMO

More than 3000 antimicrobial peptides (AMPs) have been discovered, seven of which have been approved by the U.S. Food and Drug Administration (FDA). Now commercialized, these seven peptides have mostly been utilized for topical medications, though some have been injected into the body to treat severe bacterial infections. To understand the translational potential for AMPs, we analyzed FDA-approved drugs in the FDA drug database. We examined their physicochemical properties, secondary structures, and mechanisms of action, and compared them with the peptides in the AMP database. All FDA-approved AMPs were discovered in Gram-positive soil bacteria, and 98% of known AMPs also come from natural sources (skin secretions of frogs and toxins from different species). However, AMPs can have undesirable properties as drugs, including instability and toxicity. Thus, the design and construction of effective AMPs require an understanding of the mechanisms of known peptides and their effects on the human body. This review provides an overview to guide the development of AMPs that can potentially be used as antimicrobial drugs.

13.
Curr Opin Struct Biol ; 61: 160-166, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32006812

RESUMO

Atomic detail simulations are starting to reveal how flexible polypeptides interact with fluid lipid bilayers. These insights are transforming our understanding of one of the fundamental processes in biology: membrane protein folding and assembly. Advanced molecular dynamics (MD) simulation techniques enable accurate prediction of protein structure, folding pathways and assembly in microsecond-timescales. Such simulations show how membrane-active peptides self-assemble in cell membranes, revealing their binding, folding, insertion, and aggregation, while at the same time providing atomic resolution details of peptide-lipid interactions. Essential to the impact of simulations are experimental approaches that enable calibration and validation of the computational models and techniques. In this review, we summarize the current development of applying unbiased atomic detail MD simulations and the relation to experimental techniques, to study peptide folding and provide our perspective of the field.


Assuntos
Membrana Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica , Amiloide/química , Amiloide/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Soluções
14.
Biotechnol J ; 13(3): e1700479, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29024569

RESUMO

Human butyrylcholinesterase (BChE), predominantly tetramers with a residence time of days, offers the potential to scavenge organophosphorus pesticides and chemical warfare agents. Efficient assembly of human BChE into tetramers requires an association with proline-rich peptide chaperones. In this study, the incorporation of different proline-rich peptide chaperones into BChE is investigated computationally and experimentally. First, the authors applied molecular dynamic (MD) simulations to interpret the interactions between proline-rich chaperones with human BChE tetramer domains. The P24 chaperone which contains 24 prolines, promoted the association of BChE tetramer with a 74% simulated helicity of BChE subunits, whereas the control without chaperone and BChE with an 8-proline chaperone (P8) complex exhibited 55.8 and 60.6% predicted helicity, respectively. The interaction of proline-rich chaperones with BChE subunits (B-P) provides a conduit to facilitate the interactions between BChE subunits (B-B) of the complex, which is mainly attributed to hydrophobic interactions and hydrogen-bond binding. Experimental assessment of these two proline-rich chaperones plus a 14-proline chaperone (P14) was performed and confirmed that P24 has superior capability to facilitate recombinant BChE (rBChE) tetramerization with >60% rBChE tetramer in P24-transfected rBChE cells, whereas P14- and P8-transfected rBChE cells had 44 and 33% rBChE tetramer, respectively. The rBChE control had 14% tetramer. Finally, we developed a stable rBChE tetramer expression system in CHO cells by enriching P24 expression in rBChE expressing cells. Overall, our simulations provided a design concept for identifying proline-rich peptides that promote the rBChE tetramerization in CHO cells.


Assuntos
Butirilcolinesterase/química , Células CHO , Chaperonas Moleculares/química , Proteínas Recombinantes/química , Animais , Butirilcolinesterase/genética , Cricetulus , Chaperonas Moleculares/genética , Prolina/química , Prolina/genética , Multimerização Proteica , Proteínas Recombinantes/genética
15.
Nat Commun ; 7: 13535, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874004

RESUMO

Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures-formed by a single sequence-may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Proteínas de Anfíbios/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Dicroísmo Circular , Bicamadas Lipídicas/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Termodinâmica
16.
Biotechnol Biofuels ; 8: 123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300970

RESUMO

BACKGROUND: Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify the extent and nature of lignin modification. RESULTS: Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, providing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxidation process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed for the pretreatment-insoluble lignin. CONCLUSIONS: These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreatment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to subsequent valorization.

17.
Biotechnol Biofuels ; 6(1): 119, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23971902

RESUMO

BACKGROUND: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. RESULTS: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 µmol/g biomass to 10 µmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. CONCLUSIONS: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.

18.
Artigo | PAHOIRIS | ID: phr-15504

RESUMO

Con el objeto de determinar si en el Brasil miembros adiestrados del personal de enfermería podían prestar servicios de inserción de dispositivos intrauterinos (DIU) con el mismo grado de seguridad y eficacia que los médicos, se llevó a cabo un estudio experimental en la clínica principal del Centro de Investigaciones de Atención Integrada a la Mujer y al Niño en Rio de Janeiro. De noviembre de 1984 a abril de 1986, 1711 mujeres que acudieron a la clínica para la inserción de un DIU fueron asignadas aleatoriamente a uno de sus 11 médicos o 13 miembros del personal de enfermería para la inserción de una T de cobre 200. Todos los médicos y miembros del personal de enfermería que prestaron esos servicios habían asistido al curso normal de formación clínica en planificación familiar en el Centro. De las 860 inserciones intentadas por los médicos y por el personal de enfermería, 1,3 y 3,3 porciento, respectivamente, fueron un fracaso, diferencia que resultó muy significativa en términos estadísticos (P0,01). Debido, principalmente, al tamaño pequeño del cuello uterino y a la falta de dilatación, las multíparas tuvieron una tasa de fracaso en la inserción de 8 porciento, cifra relativamente alta en comparación, con la observada en primíparas (1,0 porciento). Se observó una tasa global de complicaciones durante la inserción de 1,8 porciento y entre las complicaciones se observaron diaforesis, vómitos, síncope, laceración cervical y un caso de perforación uterina...(AU)


Se publica en inglés en el Bull. PAHO. Vol. 29(3):206-15, 1995


Assuntos
Dispositivos Intrauterinos de Cobre , Médicos , Recursos Humanos de Enfermagem , Brasil
20.
Artigo em Espanhol | PAHO | ID: pah-22220

RESUMO

Con el objeto de determinar si en el Brasil miembros adiestrados del personal de enfermería podían prestar servicios de inserción de dispositivos intrauterinos (DIU) con el mismo grado de seguridad y eficacia que los médicos, se llevó a cabo un estudio experimental en la clínica principal del Centro de Investigaciones de Atención Integrada a la Mujer y al Niño en Rio de Janeiro. De noviembre de 1984 a abril de 1986, 1711 mujeres que acudieron a la clínica para la inserción de un DIU fueron asignadas aleatoriamente a uno de sus 11 médicos o 13 miembros del personal de enfermería para la inserción de una T de cobre 200. Todos los médicos y miembros del personal de enfermería que prestaron esos servicios habían asistido al curso normal de formación clínica en planificación familiar en el Centro. De las 860 inserciones intentadas por los médicos y por el personal de enfermería, 1,3 y 3,3 porciento, respectivamente, fueron un fracaso, diferencia que resultó muy significativa en términos estadísticos (P0,01). Debido, principalmente, al tamaño pequeño del cuello uterino y a la falta de dilatación, las multíparas tuvieron una tasa de fracaso en la inserción de 8 porciento, cifra relativamente alta en comparación, con la observada en primíparas (1,0 porciento). Se observó una tasa global de complicaciones durante la inserción de 1,8 porciento y entre las complicaciones se observaron diaforesis, vómitos, síncope, laceración cervical y un caso de perforación uterina...(AU)


Assuntos
Dispositivos Intrauterinos de Cobre , Médicos , Recursos Humanos de Enfermagem/educação , Brasil
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa