Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443211

RESUMO

Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Interleucina-33/metabolismo , Plasticidade Neuronal , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Homeostase , Interleucina-33/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia
2.
Plant Biotechnol J ; 21(3): 621-634, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495424

RESUMO

More than half of the world's food is provided by cereals, as humans obtain >60% of daily calories from grains. Producing more carbohydrates is always the final target of crop cultivation. The carbohydrate partitioning pathway directly affects grain yield, but the molecular mechanisms and biological functions are poorly understood, including rice (Oryza sativa L.), one of the most important food sources. Here, we reported a prolonged grain filling duration mutant 1 (gfd1), exhibiting a long grain-filling duration, less grain number per panicle and bigger grain size without changing grain weight. Map-based cloning and molecular biological analyses revealed that GFD1 encoded a MATE transporter and expressed high in vascular tissues of the stem, spikelet hulls and rachilla, but low in the leaf, controlling carbohydrate partitioning in the stem and grain but not in the leaf. GFD1 protein was partially localized on the plasma membrane and in the Golgi apparatus, and was finally verified to interact with two sugar transporters, OsSWEET4 and OsSUT2. Genetic analyses showed that GFD1 might control grain-filling duration through OsSWEET4, adjust grain size with OsSUT2 and synergistically modulate grain number per panicle with both OsSUT2 and OsSWEET4. Together, our work proved that the three transporters, which are all initially classified in the major facilitator superfamily family, could control starch storage in both the primary sink (grain) and temporary sink (stem), and affect carbohydrate partitioning in the whole plant through physical interaction, giving a new vision of sugar transporter interactome and providing a tool for rice yield improvement.


Assuntos
Grão Comestível , Oryza , Proteínas de Plantas , Humanos , Grão Comestível/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Amido/metabolismo , Açúcares/metabolismo
3.
Opt Express ; 30(26): 47168-47178, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558652

RESUMO

This paper proposes a deep learning method for phase retrieval from two interferograms. The proposed method converts phase retrieval into the Zernike coefficient extraction problem, which can achieve Zernike coefficient extraction from two interferograms with random phase shifts. After knowing Zernike coefficients, the phase distribution can be retrieved using Zernike polynomials. The pre-filtering and phase unwrapping process are not required using the proposed method. The simulated data are analyzed, and the root mean square (RMS) of phase error reaches 0.01 λ. The effectiveness of the method is verified by the measured data.

4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232465

RESUMO

As an important agronomic trait in rice (Oryza sativa), moderate leaf rolling helps to maintain the erectness of leaves and minimize shadowing between leaves, leading to improved photosynthetic efficiency and grain yield. However, the molecular mechanisms underlying rice leaf rolling still need to be elucidated. Here, we isolated a rice mutant, rl89, showing adaxially rolled leaf phenotype due to decreased number and size of bulliform cells. We confirmed that the rl89 phenotypes were caused by a single nucleotide substitution in OsDRB2 (LOC_Os10g33970) gene encoding DOUBLE-STRANDED RNA-BINDING2. This gene was constitutively expressed, and its encoded protein was localized to both nucleus and cytoplasm. Yeast two-hybrid assay showed that OsDRB2 could interact with DICER-LIKE1 (DCL1) and OsDRB1-2 respectively. qRT-PCR analysis of 29 related genes suggested that defects of the OsDRB2-miR166-OsHBs pathway could play an important role in formation of the rolled leaf phenotype of rl89, in which OsDRB2 mutation reduced miR166 accumulation, resulting in elevated expressions of the class III homeodomain-leucine zipper genes (such as OsHB1, 3 and 5) involved in leaf polarity and/or morphology development. Moreover, OsDRB2 mutation also reduced accumulation of miR160, miR319, miR390, and miR396, which could cause the abnormal leaf development in rl89 by regulating expressions of their target genes related to leaf development.


Assuntos
MicroRNAs , Oryza , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Nucleotídeos/metabolismo , Oryza/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742907

RESUMO

The circadian clock and histone modifications could form a feedback loop in Arabidopsis; whether a similar regulatory mechanism exists in rice is still unknown. Previously, we reported that SDG724 and OsLHY are two rice heading date regulators in rice. SDG724 encodes a histone H3K36 methyltransferase, and OsLHY is a vital circadian rhythm transcription factor. Both could be involved in transcription regulatory mechanisms and could affect gene expression in various pathways. To explore the crosstalk between the circadian clock and histone methylation in rice, we studied the relationship between OsLHY and SDG724 via the transcriptome analysis of their single and double mutants, oslhy, sdg724, and oslhysdg724. Screening of overlapped DEGs and KEGG pathways between OsLHY and SDG724 revealed that they could control many overlapped pathways indirectly. Furthermore, we identified three candidate targets (OsGI, OsCCT38, and OsPRR95) of OsLHY and one candidate target (OsCRY1a) of SDG724 in the clock pathway. Our results showed a regulatory relationship between OsLHY and SDG724, which paved the way for revealing the interaction between the circadian clock and histone H3K36 methylation.


Assuntos
Arabidopsis , Relógios Circadianos , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases , Histonas/genética , Histonas/metabolismo , Metilação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628595

RESUMO

Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.


Assuntos
Herbicidas , Oryza , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Espécies Reativas de Oxigênio
7.
Plant Biotechnol J ; 19(8): 1644-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33740293

RESUMO

Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.


Assuntos
Oryza , Fotoperíodo , Ritmo Circadiano/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Plant Biol ; 20(1): 345, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698774

RESUMO

BACKGROUND: Calvin cycle plays a crucial role in carbon fixation which provides the precursors of organic macromolecules for plant growth and development. Currently, no gene involved in Calvin cycle has been identified in monocotyledonous plants through mutant or/and map-based cloning approach. RESULTS: Here, we isolated a low-tillering mutant, c6635, in rice (Oryza sativa). The mutant displayed light green leaves and intensely declined pigment contents and photosynthetic capacity at early growth stage. Moreover, its individual plant showed a much smaller size, and most individuals produced only two tillers. At mature stage, its productive panicles, grain number and seed setting rate were significantly decreased, which lead to a sharp reduction of the grain yield. We confirmed that a single nucleotide mutation in LOC_Os04g16680 gene encoding sedoheptulose 1,7-bisphosphatase (SBPase) involved in Calvin cycle was responsible for the mutant phenotype of c6635 through map-based cloning, MutMap analysis and complementation experiments. Sequence analysis suggested that the point mutation caused an amino acid change from Gly-364 to Asp at the C-terminal of SBPase. In addition, OsSBPase gene was mainly expressed in leaf, and the encoded protein was located in chloroplast. The mutation of OsSBPase could significantly affect expression levels of some key genes involved in Calvin cycle. CONCLUSIONS: We successfully identified a SBPase gene in monocotyledonous plants. Meanwhile, we demonstrated that a single nucleotide substitution at the 3'-end of this gene severely affects plant growth and grain yield, implying that the Gly-364 at the C-terminal of SBPase could play an important role in SBPase function in rice.


Assuntos
Mutação , Oryza/crescimento & desenvolvimento , Oryza/genética , Monoéster Fosfórico Hidrolases/genética , Fotossíntese/genética , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo
9.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375756

RESUMO

The iron-sulfur subunit (SDH2) of succinate dehydrogenase plays a key role in electron transport in plant mitochondria. However, it is yet unknown whether SDH2 genes are involved in leaf senescence and yield formation. In this study, we isolated a late premature senescence mutant, lps1, in rice (Oryza sativa). The mutant leaves exhibited brown spots at late tillering stage and wilted at the late grain-filling stage and mature stage. In its premature senescence leaves, photosynthetic pigment contents and net photosynthetic rate were reduced; chloroplasts and mitochondria were degraded. Meanwhile, lps1 displayed small panicles, low seed-setting rate and dramatically reduced grain yield. Gene cloning and complementation analysis suggested that the causal gene for the mutant phenotype was OsSDH2-1 (LOC_Os08g02640), in which single nucleotide mutation resulted in an amino acid substitution in the encoded protein. OsSDH2-1 gene was expressed in all organs tested, with higher expression in leaves, root tips, ovary and anthers. OsSDH2-1 protein was targeted to mitochondria. Furthermore, reactive oxygen species (ROS), mainly H2O2, was excessively accumulated in leaves and young panicles of lps1, which could cause premature leaf senescence and affect panicle development and pollen function. Taken together, OsSDH2-1 plays a crucial role in leaf senescence and yield formation in rice.


Assuntos
Envelhecimento/genética , Proteínas Ferro-Enxofre/genética , Oryza/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Subunidades Proteicas/genética , Succinato Desidrogenase/genética , Cloroplastos/ultraestrutura , Grão Comestível , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Ferro-Enxofre/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Subunidades Proteicas/metabolismo , Característica Quantitativa Herdável , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Succinato Desidrogenase/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 45(3): 548-554, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237512

RESUMO

Study the suitability of organic film for salvianolic acid in the ultrafiltration process of Danshen Dizhuye. UPLC was used to analyze the migration of nine phenolic active ingredients in Danshen Dizhuye during ultrafiltration of PES hollow fiber membrane and PS hollow fiber membrane. The structural composition of multi-components was analyzed by three different batches of Danshen Dizhuye before and after ultrafiltration of the two membranes. The results showed that 9 phenolic active ingredients in Danshen Dizhuye did not change significantly after ultrafiltration through PES membrane. However, after ultrafiltration through PS membrane, the content of sodium danshensu, protocatechualdehyde, caffeic acid, 3-hydroxy-4-methoxycinnamic acid and rosmarinic acid in Danshen Dizhuye did not change significantly, while salvianolic acid D, salvianolic acid B and lithospermic acid decreased by about 20%, and the content of salvianolic acid A decreased significantly. The final content in equilibrium was only about 20% of the original solution. Therefore, an in-depth study on the migration particularity of salvianolic acid A in ultrafiltration membrane was the focuse. The results showed that the loss of salvianolic acid A was caused by both membranes during ultrafiltration, and salvianolic acid A was lost more in PS membrane. When the membrane was washed and regenerated, it was found that salvianolic acid A was detected in the ethanol washing solution, but not in the washing liquid, indicating that the loss of salvianolic acid A during the ultrafiltration was mainly adsorptive action. The results suggested that the migration of phenolic active ingredients in Danshen Dizhuye during the membrane ultrafiltration process did not completely follow the molecular weight passing rule of the membrane pore size. At the same time, it may be affected by factors, such as the structure of the membrane material, and the interaction between the membrane structure and the structure of components, and exhibit different migration behaviors during the ultrafiltration of the membrane.


Assuntos
Alcenos/química , Medicamentos de Ervas Chinesas/química , Polifenóis/química , Salvia miltiorrhiza/química , Ultrafiltração , Cromatografia Líquida de Alta Pressão
11.
Anal Chem ; 91(3): 2279-2287, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589537

RESUMO

Quantitative methods to precisely measure cellular states in vivo have become increasingly important and desirable in modern biology. Recently, stimulated Raman scattering (SRS) microscopy has emerged as a powerful tool to visualize small biological molecules tagged with alkyne (C≡C) or carbon-deuterium (C-D) bonds in the cell-silent region. In this study, we developed a technique based on SRS microscopy of vibrational tags for quantitative imaging of lipid synthesis and lipolysis in live animals. The technique aims to overcome the major limitations of conventional fluorescent staining and lipid extraction methods that do not provide the capability of in vivo quantitative analysis. Specifically, we used three bioorthogonal lipid molecules (the alkyne-tagged fatty acid 17-ODYA, deuterium-labeled saturated fatty acid PA-D31, and unsaturated fatty acid OA-D34) to investigate the metabolic dynamics of lipid droplets (LDs) in live Caenorhabditis elegans ( C. elegans). Using a hyperspectral SRS (hsSRS) microscope and subtraction method, the interfering non-Raman background was eliminated to improve the accuracy of lipid quantification. A linear relationship between SRS signals and fatty acid molar concentrations was accurately established. With this quantitative analysis tool, we imaged and determined the changes in concentration of the three fatty acids in LDs of fed or starved adult C. elegans. Using the hsSRS imaging mode, we also observed the desaturation of fatty acids in adult C. elegans via spectral analysis on the SRS signals from LDs. The results demonstrated the unique capability of hsSRS microscopy in quantitative analysis of lipid metabolism in vivo.


Assuntos
Caenorhabditis elegans/metabolismo , Ácidos Graxos Insaturados/análise , Lipogênese/fisiologia , Lipólise/fisiologia , Ácido Oleico/análise , Ácido Palmítico/análise , Animais , Deutério/química , Ácidos Graxos Insaturados/metabolismo , Microscopia Óptica não Linear , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo
12.
BMC Plant Biol ; 19(1): 456, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664904

RESUMO

BACKGROUND: Phytyl residues are the common side chains of chlorophyll (Chl) and tocopherols. Geranylgeranyl reductase (GGR), which is encoded by CHLP gene, is responsible for phytyl biosynthesis. The light-harvesting like protein LIL3 was suggested to be required for stability of GGR and protochlorophyllide oxidoreductase in Arabidopsis. RESULTS: In this study, we isolated a yellow-green leaf mutant, 637ys, in rice (Oryza sativa). The mutant accumulated majority of Chls with unsaturated geranylgeraniol side chains and displayed a yellow-green leaf phenotype through the whole growth period. The development of chloroplasts was suppressed, and the major agronomic traits, especially No. of productive panicles per plant and of spikelets per panicle, dramatically decreased in 637ys. Besides, the mutant exhibited to be sensitive to light intensity and deficiency of tocopherols without obvious alteration in tocotrienols in leaves and grains. Map-based cloning and complementation experiment demonstrated that a point mutation on the OsLIL3 gene accounted for the mutant phenotype of 637ys. OsLIL3 is mainly expressed in green tissues, and its encoded protein is targeted to the chloroplast. Furthermore, the 637ys 502ys (lil3 chlp) double mutant exclusively accumulated geranylgeranyl Chl and exhibited lethality at the three-leaf stage. CONCLUSIONS: We identified the OsLIL3 gene through a map-based cloning approach. Meanwhile, we demonstrated that OsLIL3 is of extreme importance to the function of OsGGR, and that the complete replacement of phytyl side chain of chlorophyll by geranylgeranyl chain could be fatal to plant survival in rice.


Assuntos
Proteínas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oxirredutases/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Cloroplastos/metabolismo , Longevidade/genética , Mutação , Oryza/metabolismo , Oxirredutases/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo
13.
J Am Chem Soc ; 139(41): 14792-14799, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28960975

RESUMO

Saponins are a class of naturally occurring bioactive and biocompatible amphiphilic glycosides produced by plants. Some saponins, such as α-hederin, exhibit unique cell membrane interactions. At concentrations above their critical micelle concentration, they will interact and aggregate with membrane cholesterol to form transient pores in the cell membrane. In this project, we utilized the unique permeabilization and amphiphilic properties of saponins for the intracellular delivery of deep-red-emitting aggregation-induced emission nanoparticles (AIE NPs) and pure organic room-temperature phosphorescent nanocrystals (NCs). We found this method to be biocompatible, inexpensive, ultrafast, and applicable to deliver a wide variety of AIE NPs and NCs into cancer cells.

14.
J Mech Behav Biomed Mater ; 150: 106343, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169211

RESUMO

In this paper, inorganic phosphate bonded coatings (IPBCs) via embedding reduced graphene oxide (rGO) modified with heptadecafluoro-1,1,2,2-tetradecyl trimethoxysilane (FAS) were prepared through sol-gel method. Aim of this paper is to research the corrosion resistance of IPBCs with the addition of rGO modified with FAS. Firstly, the Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman) and surface morphology of GO and rGO modified with and without FAS were characterized. Results indicated that the hydrophobic -CF2- and -CF3 groups were successfully introduced into GO and rGO after modification. And IPBCs with rGO-FAS exhibited higher hydrophobicity and corrosion resistance than IPBCs with the addition of GO or GO-FAS. That is because the hydrophobicity and the introduction of low surface energy material is conducive to overcoming the interaction of rGO itself, thus rGO can be better utilized and played, which resulting the excellent corrosion performance of IPBC@rGO-FAS.


Assuntos
Grafite , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Corrosão , Grafite/química
15.
iScience ; 26(4): 106542, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123227

RESUMO

Long-term potentiation (LTP), which underlies learning and memory, can be induced by high-frequency electrical stimulation (HFS or HFES) and is thought to occur at the synapses of efferent projection. Here, the contralateral connectivity in mice auditory cortex was investigated to reveal the fundamental corticocortical connection properties. After HFES, plasticity was not observed at the terminal synapses at the recording site. The optogenetic HFS at the recording site of the interhemispheric cortical projections could not induce LTP, but HFES at the recording site could induce the interhemispheric cortical LTP. Our subsequent results uncovered that it is the cholecystokinin (CCK) released from the entorhino-neocortical pathway induced by HEFS that modulates the neuroplasticity of the afferent projections, including interhemispheric auditory cortical afferents. Our study illustrates a heterosynaptic mechanism as the basis for cortical plasticity. This regulation might contribute new spots for the understanding and treatment of neurological disorders.

16.
Nat Commun ; 13(1): 1959, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414131

RESUMO

The spinal cord accounts for the main communication pathway between the brain and the peripheral nervous system. Spinal cord injury is a devastating and largely irreversible neurological trauma, and can result in lifelong disability and paralysis with no available cure. In vivo spinal cord imaging in mouse models without introducing immunological artifacts is critical to understand spinal cord pathology and discover effective treatments. We developed a minimally invasive intervertebral window by retaining the ligamentum flavum to protect the underlying spinal cord. By introducing an optical clearing method, we achieve repeated two-photon fluorescence and stimulated Raman scattering imaging at subcellular resolution with up to 15 imaging sessions over 6-167 days and observe no inflammatory response. Using this optically cleared intervertebral window, we study neuron-glia dynamics following laser axotomy and observe strengthened contact of microglia with the nodes of Ranvier during axonal degeneration. By enabling long-term, repetitive, stable, high-resolution and inflammation-free imaging of mouse spinal cord, our method provides a reliable platform in the research aiming at interpretation of spinal cord physiology and pathology.


Assuntos
Traumatismos da Medula Espinal , Animais , Diagnóstico por Imagem , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
17.
Nat Biotechnol ; 40(11): 1663-1671, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697805

RESUMO

High-resolution optical imaging deep in tissues is challenging because of optical aberrations and scattering of light caused by the complex structure of living matter. Here we present an adaptive optics three-photon microscope based on analog lock-in phase detection for focus sensing and shaping (ALPHA-FSS). ALPHA-FSS accurately measures and effectively compensates for both aberrations and scattering induced by specimens and recovers subcellular resolution at depth. A conjugate adaptive optics configuration with remote focusing enables in vivo imaging of fine neuronal structures in the mouse cortex through the intact skull up to a depth of 750 µm below the pia, enabling near-non-invasive high-resolution microscopy in cortex. Functional calcium imaging with high sensitivity and high-precision laser-mediated microsurgery through the intact skull were also demonstrated. Moreover, we achieved in vivo high-resolution imaging of the deep cortex and subcortical hippocampus up to 1.1 mm below the pia within the intact brain.


Assuntos
Microscopia , Óptica e Fotônica , Animais , Camundongos , Imagem Óptica/métodos , Neurônios , Córtex Cerebral
18.
iScience ; 24(10): 103176, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34693226

RESUMO

Neuronal activation is often accompanied by the regulation of cerebral hemodynamics via a process known as neurovascular coupling (NVC) which is essential for proper brain function and has been observed to be disrupted in a variety of neuropathologies. A comprehensive understanding of NVC requires imaging capabilities with high spatiotemporal resolution and a field-of-view that spans different orders of magnitude. Here, we present an approach for concurrent multi-contrast mesoscopic and two-photon microscopic imaging of neurovascular dynamics in the cortices of live mice. We investigated the spatiotemporal correlation between sensory-evoked neuronal and vascular responses in the auditory cortices of living mice using four imaging modalities. Our findings unravel drastic differences in the NVC at the regional and microvascular levels and the distinctive effects of different brain states on NVC. We further investigated the brain-state-dependent changes of NVC in large cortical networks and revealed that anesthesia and sedation caused spatiotemporal disruption of NVC.

19.
Rice (N Y) ; 14(1): 50, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34089406

RESUMO

BACKGROUND: Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to now, GSAM genes have been successively identified from many species. Besides, it was found that GSAM could form a dimeric protein with itself by x-ray crystallography. However, no mutant of GSAM has been identified in monocotyledonous plants, and no experiment on interaction of GSAM protein with itself has been reported so far. RESULT: We isolated a yellow leaf mutant, ys53, in rice (Oryza sativa). The mutant showed decreased photosynthetic pigment contents, suppressed chloroplast development, and reduced photosynthetic capacity. In consequence, its major agronomic traits were significantly affected. Map-based cloning revealed that the candidate gene was LOC_Os08g41990 encoding GSAM protein. In ys53 mutant, a single nucleotide substitution in this gene caused an amino acid change in the encoded protein, so its ALA-synthesis ability was significantly reduced and GSA was massively accumulated. Complementation assays suggested the mutant phenotype of ys53 could be rescued by introducing wild-type OsGSAM gene, confirming that the point mutation in OsGSAM is the cause of the mutant phenotype. OsGSAM is mainly expressed in green tissues, and its encoded protein is localized to chloroplast. qRT-PCR analysis indicated that the mutation of OsGSAM not only affected the expressions of tetrapyrrole biosynthetic genes, but also influenced those of photosynthetic genes in rice. In addition, the yeast two-hybrid experiment showed that OsGSAM protein could interact with itself, which could largely depend on the two specific regions containing the 81th-160th and the 321th-400th amino acid residues at its N- and C-terminals, respectively. CONCLUSIONS: We successfully characterized rice GSAM gene by a yellow leaf mutant and map-based cloning approach. Meanwhile, we verified that OsGSAM protein could interact with itself mainly by means of the two specific regions of amino acid residues at its N- and C-terminals, respectively.

20.
J Biophotonics ; 13(2): e201960057, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31626372

RESUMO

In this work, the metabolic characteristics of adipose tissues in live mouse model were investigated using a multiphoton redox ratio and fluorescence lifetime imaging technology. By analyzing the intrinsic fluorescence of metabolic coenzymes, we measured the optical redox ratios of adipocytes in vivo and studied their responses to thermogenesis. The fluorescence lifetime imaging further revealed changes in protein bindings of metabolic coenzymes in the adipocytes during thermogenesis. Our study uncovered significant heterogeneity in the cellular structures and metabolic characteristics of thermogenic adipocytes in brown and beige fat. Subgroups of brown and beige adipocytes were identified based on the distinct lipid size distributions, redox ratios, fluorescence lifetimes and thermogenic capacities. The results of our study show that this label-free imaging technique can shed new light on in vivo study of metabolic dynamics and heterogeneity of adipose tissues in live organisms.


Assuntos
Tecido Adiposo Bege , Microscopia , Adipócitos , Tecido Adiposo Bege/metabolismo , Animais , Camundongos , Oxirredução , Termogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa