RESUMO
BACKGROUND: Accurately distinguishing between invasive thymic epithelial tumors (TETs) and anterior mediastinal lymphoma before surgery is crucial for subsequent treatment choices. But currently, the diagnosis of invasive TET is sometimes difficult to distinguish from anterior mediastinal lymphoma. OBJECTIVE: To assess the application of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computer tomography (PET/CT) in the differential diagnosis of TETs and anterior mediastinal lymphomas. METHODS: 18F-FDG PET/CT images of 133 invasive TETs and anterior mediastinal lymphomas patients were retrospectively analyzed. In particular, the tumor's longest diameter and maximum standardized uptake value (SUVmax) were evaluated. The SUVmax and longest diameter values of the two groups were analyzed by using the receiver operating characteristic (ROC) curve to determine the optimal threshold and diagnostic efficiency. RESULTS: Age, myasthenia gravis, SUVmax and tumor longest diameter differed significantly between invasive TETs and anterior mediastinal lymphomas patients. The tumor location, calcification, relationship with adjacent vessels and distant metastasis differed significantly between the groups. The ROC analysis showed an AUC for SUVmax and tumor longest diameter of 0.841 and 0.737. Respectively, the cutoff values with the best diagnostic performance were 9.65 (sensitivity: 77.78%, specificity: 81.97%) and 6.65 (sensitivity: 80.56%, specificity: 62.30%) for SUVmax and tumor longest diameter. The diagnostic model of SUVmax, calcification, relationship with surrounding blood vessels, lymph node metastasis and lung metastasis in the highest AUC of 0.935 (sensitivity: 90.16%, specificity: 88.89%). In addition, we incorporated splenic involvement and metastatic sub-diaphragmatic lymph node into Model 2 as a new predictive model 3 for differential diagnosis and found a significant improvement in the diagnostic performance of Model 3. CONCLUSION: The diagnostic model composed of 18F-FDG PET parameters is improving the differential diagnosis of invasive TETs and anterior mediastinal lymphomas.
Assuntos
Calcinose , Linfoma , Neoplasias do Timo , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Diagnóstico Diferencial , Estudos Retrospectivos , Neoplasias do Timo/diagnóstico por imagem , Linfoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , ComputadoresRESUMO
Ganoderma lucidum is a medicinal fungus that has been widely used in China and many Asian countries for thousands of years. This once rare macrofungus has now been artificially cultivated in a number of regions in China. However, detailed knowledge of its composition across different geographical origins is still lacking, as are analytical methods for comprehensive profiling of the diverse phytochemicals contained in G. lucidum. In this work, an on-demand strategy based on high-resolution MS and molecular networking is applied for natural product characterization, which led to the identification of 84 constituents in G. lucidum. Moreover, multivariate analysis, including hierarchical cluster analysis and orthogonal partial least squares-discriminant analysis, was used to analyze the (dis)similarity of the G. lucidum samples collected from the three main production areas (i.e., Jilin, Henan and Shandong Province). The results revealed a significant variation in the chemical composition of samples from different provinces. Marker constituents corresponding to the differentiation were then screened in terms of the variable importance in projection value, P-value and fold change. A total of 24 constituents were identified as geoherbalism markers, such as ganoderenic acid A for Henan, ganolucidic acid B for Jilin and ganodernoid D for Shandong. This proof-of-concept application demonstrates that combining MS molecular networking with meticulous multivariate analysis can provide a sensitive and comprehensive analytical approach for the quality assessment of traditional Chinese medicine ingredients. This study also suggests that the bioactivity and efficacy from different origins should be further evaluated considering the large difference in chemical compositions.
Assuntos
Reishi , Reishi/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Análise Multivariada , Medicina Tradicional ChinesaRESUMO
The causative effect of GM-CSF produced by cardiac fibroblasts to development of heart failure has not been shown. We identified the pathological GM-CSF-producing cardiac fibroblast subset and the specific deletion of IL-17A signaling to these cells attenuated cardiac inflammation and heart failure. We describe here the CD45- CD31- CD29+ mEF-SK4+ PDGFRα+ Sca-1+ periostin+ (Sca-1+ ) cardiac fibroblast subset as the main GM-CSF producer in both experimental autoimmune myocarditis and myocardial infarction mouse models. Specific ablation of IL-17A signaling to Sca-1+ periostin+ cardiac fibroblasts (PostnCre Il17rafl/fl ) protected mice from post-infarct heart failure and death. Moreover, PostnCre Il17rafl/fl mice had significantly fewer GM-CSF-producing Sca-1+ cardiac fibroblasts and inflammatory Ly6Chi monocytes in the heart. Sca-1+ cardiac fibroblasts were not only potent GM-CSF producers, but also exhibited plasticity and switched their cytokine production profiles depending on local microenvironments. Moreover, we also found GM-CSF-positive cardiac fibroblasts in cardiac biopsy samples from heart failure patients of myocarditis or ischemic origin. Thus, this is the first identification of a pathological GM-CSF-producing cardiac fibroblast subset in human and mice hearts with myocarditis and ischemic cardiomyopathy. Sca-1+ cardiac fibroblasts direct the type of immune cells infiltrating the heart during cardiac inflammation and drive the development of heart failure.
Assuntos
Ataxina-1/genética , Fibroblastos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Insuficiência Cardíaca/patologia , Infarto do Miocárdio/patologia , Miocardite/patologia , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Quimiocina CCL2/biossíntese , Humanos , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Cardiac manifestations are a major cause of morbidity and mortality in patients with eosinophil-associated diseases. Eosinophils are thought to play a pathogenic role in myocarditis. We investigated the pathways that recruit eosinophils to the heart using a model of eosinophilic myocarditis, in which experimental autoimmune myocarditis (EAM) is induced in IFNγ-/- IL-17A-/- mice. Two conditions are necessary for efficient eosinophil trafficking to the heart: high eotaxin (CCL11, CCL24) expression in the heart and expression of the eotaxin receptor CCR3 by eosinophils. We identified cardiac fibroblasts as the source of CCL11 in the heart interstitium. CCL24 is produced by F4/80+ macrophages localized at inflammatory foci in the heart. Expression of CCL11 and CCL24 is controlled by Th2 cytokines, IL-4 and IL-13. To determine the relevance of this pathway in humans, we analyzed endomyocardial biopsy samples from myocarditis patients. Expression of CCL11 and CCL26 was significantly increased in eosinophilic myocarditis compared to chronic lymphocytic myocarditis and positively correlated with the number of eosinophils. Thus, eosinophil trafficking to the heart is dependent on the eotaxin-CCR3 pathway in a mouse model of EAM and associated with cardiac eotaxin expression in patients with eosinophilic myocarditis. Blocking this pathway may prevent eosinophil-mediated cardiac damage.
Assuntos
Quimiocina CCL11/metabolismo , Quimiocina CCL24/metabolismo , Eosinófilos/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Doença Autoimune do Sistema Nervoso Experimental/imunologia , Adulto , Idoso , Animais , Miosinas Cardíacas/imunologia , Movimento Celular , Células Cultivadas , Feminino , Humanos , Interferon gama/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/patologia , Receptores CCR3/genética , Equilíbrio Th1-Th2RESUMO
The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.
Assuntos
Antibacterianos/farmacologia , Doenças Autoimunes/imunologia , Coração/fisiopatologia , Linfócitos/imunologia , Microbiota , Miocardite/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Disbiose/prevenção & controle , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/tratamento farmacológico , Miocardite/metabolismoRESUMO
OBJECTIVES: To evaluate the effects of the combination of low-intensity pulsed ultrasound (LIPUS) and induced pluripotent stem cells-derived neural crest stem cells (iPSCs-NCSCs) on the regeneration of rat transected sciatic nerve in vivo. RESULTS: Tissue-engineered tubular nerve conduit was fabricated by electrospinning aligned nanofibers in longitudinal direction. This sustained the iPSCs-NCSCs and could be used as a bridge in rat transected sciatic nerve. Treatment with 0.3 W cm(-2) LIPUS for 2 weeks and 5 min per day significantly improved the sciatic functional index, static sciatic function index and nerve conduction velocity of rat sciatic nerve. Histological analysis showed that there were more regenerative new blood vessels and new neurofilaments, higher expression level of ß-III tubulin (Tuj1) in the experimental group seeded with iPSCs-NCSCs and stimulated with LIPUS. CONCLUSION: Combination of LIPUS with iPSCs-NCSCs promoted the regeneration and reconstruction of rat transected sciatic nerve and is an efficient and cost-effective method for peripheral nerve regeneration.
Assuntos
Regeneração Tecidual Guiada/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Nervo Isquiático/lesões , Neuropatia Ciática/terapia , Ondas Ultrassônicas , Animais , Modelos Animais de Doenças , Regeneração Nervosa , Ratos , Resultado do TratamentoRESUMO
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
RESUMO
Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.
Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/farmacologia , Fibroínas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Bombyx/química , Apoptose , Seda/químicaRESUMO
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poliuretanos , Óleos de Silicone , Propriedades de Superfície , Poliuretanos/química , Óleos de Silicone/química , Carbonato de Cálcio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Água/química , Temperatura , Staphylococcus aureus/efeitos dos fármacos , Teste de MateriaisRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Boiled silkworm cocoons have been used to treat 'Xiaoke disease' (diabetes mellitus) recorded in Chinese medicine for over 800 years. In recent years, it has been found that the active substance silk sericin (SS) has therapeutic benefits in treating type 2 diabetes mellitus (T2DM). SS promotes pancreatic islet signalling, the proliferation of pancreatic islet cells, and insulin secretion. It is inferred that SS enters the bloodstream after oral administration and plays a role in the body's circulation. As a natural protein, SS needs to resist digestion by proteases in the gastrointestinal tract and cross the gastrointestinal barrier after oral administration. It is currently unclear how SS crosses the gastrointestinal barrier and whether it exerts therapeutic effects on T2DM by entering the circulation. AIM OF THE STUDY: To study how SS crosses the gastrointestinal barrier and whether it enters the body circulation to exert a therapeutic effect on T2DM. MATERIALS AND METHODS: SS was extracted from silkworm cocoons using an alkaline method with sodium carbonate. The antidigestive capacity of SS was detected using SDS-PAGE gel electrophoresis experiments. The mode of uptake and translocation of orally consumed SS in vivo was analysed using the AP-side to BL-side and BL-side-AP-side translocations, apparent Permeability coefficient (Papp), and Exocytosis rates (ER). The study compared the differences between the adSS group and the adSS + EDTA group by using Ethylenediaminetetraacetic acid (EDTA) to separate the tight junctions between Caco-2 cells. The aim was to analyze whether the transport mode of oral filaggrin proteins in vivo could be absorbed by bypass transport. By administering SS through oral and intraperitoneal injection to type 2 diabetic mice, we measured its concentration in the blood, as well as blood glucose and insulin levels, to determine its effectiveness in treating diabetes and its ability to enter the body's circulation for treatment. RESULTS: The molecular weight of SS decreased from 10kâ¼25 kDa to 10kâ¼15 kDa after in vitro simulated gastrointestinal fluid digestion, indicating its good antidigestive properties. The apparent Papp was greater than 1 × 10-6 cm·s-1, and the ER was between 0.5 and 1.5, indicating that adSS was well-absorbed and mainly passively transported. The Caco-2 cell model showed that the addition of EDTA promoted the transport of adSS, resulting in significantly larger Papp and ER values, indicating that adSS was absorbed by bypass transport. After oral administration of SS, the concentration of SS in the blood was lower than after intraperitoneal injection, which is 60% of intraperitoneal administration. Mice with a T2DM model who were administered SS for 5 weeks showed significant improvement in insulin resistance and glucose tolerance. Additionally, the pancreatic tissue appeared more regular. In the treatment of T2DM, injections of SS have been shown to be more effective than oral administration. Both oral and intraperitoneal injections have been partially involved in the circulation. CONCLUSIONS: SS is enzymatically cleaved by proteolytic enzymes in the gastrointestinal tract. The smaller molecules are partially absorbed into the body's circulation through passive and paracrine transport, exerting a therapeutic effect on T2DM.
Assuntos
Bombyx , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Sericinas , Animais , Sericinas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Administração Oral , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células CACO-2 , Masculino , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Camundongos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Transporte Biológico/efeitos dos fármacosRESUMO
Bone injury is often associated with tears in the periosteum and changes in the internal stress microenvironment of the periosteum. In this study, we investigated the biological effects of periosteal prestress release on periosteum-derived cells (PDCs) and the potential mechanisms of endogenous stem cell recruitment. Decellularized periosteum with natural extracellular matrix (ECM) components was obtained by a combination of physical, chemical, and enzymatic decellularization. The decellularized periosteum removed immunogenicity while retaining the natural network structure and composition of the ECM. The Young's modulus has no significant difference between the periosteum before and after decellularization. The extracted PDCs were further composited with the decellularized periosteum and subjected to 20% stress release. It was found that the proliferative capacity of PDCs seeded on decellularized periosteum was significantly enhanced 6 h after stress release of the periosteum. The cell culture supernatant obtained after periosteal prestress release was able to significantly promote the migration ability of PDCs within 24 h. Enzyme-linked immunosorbnent assay (ELISA) experiments showed that the expression of stroma-derived factor-1α (SDF-1α) and vascular endothelial growth factor (VEGF) in the supernatant increased significantly after 3 h and 12 h of stress release, respectively. Furthermore, periosteal stress release promoted the high expression of osteogenic markers osteocalcin (OCN), osteopontin (OPN), and collagen type I of PDCs. The change in stress environment caused by the release of periosteal prestress was sensed by integrin ß1, a mechanoreceptor on the membrane of PDCs, which further stimulated the expression of YAP in the nucleus. These investigations provided a novel method to evaluate the importance of mechanical stimulation in periosteum, which is also of great significance for the design and fabrication of artificial periosteum with mechanical regulation function.
Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Osteogênese , Periósteo , Estresse Mecânico , Periósteo/citologia , Periósteo/metabolismo , Osteogênese/fisiologia , Animais , Matriz Extracelular/metabolismo , Células Cultivadas , Humanos , Engenharia TecidualRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Jianwei Xiaoyan Granule (JWXYG) is the traditional Chinese medicine preparation in Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, which has been widely used in clinical treatment of chronic atrophic gastritis (CAG). However, the material basis and potential mechanism of JWXYG in the treatment of CAG are not clear. PURPOSE: To explore the material basis and potential mechanism of JWXYG in the treatment of CAG. METHODS: In this study, the components of JWXYG were analyzed by HPLC-Q-TOF-MS/MS. Then, the CAG model in rats established by a composite modeling method and MC cell model induced by MNNG were used to explore the improvement effect of JWXYG on CAG. Finally, the potential mechanism of JWXYG in the treatment of CAG was preliminarily predicted based on network pharmacology and validated experimentally. RESULTS: Thirty-one components of JWXYG were analyzed through HPLC-Q-TOF-MS/MS, such as albiflorin, paeoniflorin, lobetyolin firstly. Research results in vivo showed that the gastric mucosa became thinner, intestinal metaplasia appeared, the number of glands was reduced, the serum levels of PG I and PG II increased and the contents of G17 and IL-6 reduced in CAG model rats. After 4 weeks of JWXYG (2.70 g/kg) administration, these conditions were significantly improved. In addition, cell viability, migration, and invasion of MNNG-induced MC cells was inhibited by JWXYG treatment (800 µg/mL). Furthermore, the results of network pharmacology indicated that HIF-1 and VEGF signaling pathways might play important roles in the therapeutic process. Then the results of Western blot, immunohistochemistry and immunofluorescence confirmed that with JWXYG treatment, the increased expression of HIF-1α, VEGF and VEGFR2 in gastric issue of CAG rats were restrained. Eventually, potential components of JWXYG in the treatment of CAG were predicted through molecular docking to elucidate the material basis. CONCLUSION: JWXYG could inhibit angiogenesis by regulating HIF-1α-VEGF pathway to exert therapeutic effects on CAG. Our study explored the potential mechanisms and material basis of JWXYG in the treatment of CAG and provides experimental data for the clinical rational application of JWXYG.
Assuntos
Medicamentos de Ervas Chinesas , Gastrite Atrófica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ratos Sprague-Dawley , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Gastrite Atrófica/tratamento farmacológico , Gastrite Atrófica/patologia , Gastrite Atrófica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Doença Crônica , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Modelos Animais de Doenças , Farmacologia em RedeRESUMO
Low-intensity pulsed ultrasound (LIPUS) acting on induced pluripotent stem cells-derived neural crest stem cells (iPSCs-NCSCs) is considered a promising therapy to improve the efficacy of injured peripheral nerve regeneration. Effects of LIPUS on cell viability, proliferation and neural differentiation of iPSCs-NCSCs were examined respectively in this study. LIPUS at 500 mW cm(-2) enhanced the viability and proliferation of iPSCs-NCSCs after 2 days and, after 4 days, up-regulated gene and protein expressions of NF-M, Tuj1, S100ß and GFAP in iPSCs-NCSCs whereas after 7 days expression of only NF-M, S100ß and GFAP were up-regulated. LIPUS treatment at an appropriate intensity can, therefore, be an efficient and cost-effective method to enhance cell viability, proliferation and neural differentiation of iPSCs-NCSCs in vitro for peripheral nerve tissue engineering.
Assuntos
Fenômenos Fisiológicos Celulares/efeitos da radiação , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Neurogênese/efeitos da radiação , Som , Células Cultivadas , Humanos , Imuno-Histoquímica , Crista Neural/citologiaRESUMO
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Assuntos
Encapsulamento de Células , Polímeros , Polímeros/química , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Hidrogéis/químicaRESUMO
Activated hepatic stellate cells (HSCs) is a key event in the progression of liver fibrosis. HSCs transdifferentiate into myofibroblasts and secrete large amounts of extracellular matrix, resulting in increased liver stiffness. It is difficult for platforms constructed in vitro to simulate the structure, composition, and stiffness of the 3D microenvironment of HSCs in vivo. Here, 3D scaffolds with different stiffness are constructed by decellularizing rat livers at different stages of fibrosis. The effects of matrix stiffness on the proliferation, activation, and reversion of HSCs are studied. The results demonstrate these scaffolds have good cytocompatibility. It is also found that the high stiffness can significantly promote the activation of HSCs, and this process is accompanied by the activation of integrin ß1 as well as the nucleation and activation of Yes-associated protein (YAP). Moreover, the low stiffness of the scaffold can promote the reversion of activated HSCs, which is associated with cell apoptosis and accompanied by the inactivation of integrin ß1 and YAP. These results suggest that YAP may be a potential therapeutic target for the treatment of liver fibrosis and the theoretical feasibility of inducing activated HSCs reversion to the resting state by regulating matrix stiffness of liver.
Assuntos
Células Estreladas do Fígado , Transdução de Sinais , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Integrina beta1/metabolismo , Integrina beta1/farmacologia , Integrina beta1/uso terapêutico , Fígado/metabolismo , Cirrose Hepática , Proteínas/metabolismoRESUMO
Peripheral nerve injury (PNI) is one of the major clinical treatment challenges following an impact on the body. When PNI manifests as nerve gaps, surgical connections and exogenous grafts are required. Recently, electrically conductive polymers (CPs) based nerve guidance conduits have yielded promising results for treating PNI. Polypyrrole (PPy) has become one of the most commonly used CPs in PNI repair due to its advantages of high conductivity and excellent biocompatibility. In this study, we combined different PPy concentrations with a chitosan (CS) temperature-sensitive hydrogel system containing decellularized nerve matrix (DNM) to construct the electrically conductive nerve conduits. We evaluated the physical and biological properties of four groups of nerve conduits. It was found that the PPy concentrations were proportional to the electrical conductivity of the nerve conduits. The mechanical properties of the nerve conduits increased with higher PPy concentrations but decreased when the PPy concentration was as high as 8%. Meanwhile, the co-blending of PPy and DNM gave the nerve conduit suitable degradation properties. Furthermore, in vitro cytotoxicity assay and live/dead assay demonstrated these conduits could support the adhesion and growth of cells. In summary, the electrically conductive nerve conduits with high conductivity, mechanical properties, biodegradation characteristics, and cytocompatibility had potential applications in the field of peripheral nerve regeneration.
Assuntos
Quitosana , Traumatismos dos Nervos Periféricos , Humanos , Polímeros , Hidrogéis , Pirróis , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapiaRESUMO
Thermoplastic polyurethane (TPU) membrane has super physical-mechanical properties and biocompatibility, but the surface is inert and lack of active groups which limit its application in cell culture. Silk sericin (SS) can improve cell adhesion, proliferation, growth and metabolism. In this paper, SS was grafted onto the surface of TPU membrane by -NH2 bridge to build a high efficiency cell culture membrane. The FT-IR spectrum results indicated SS was grafted by chemical bond. According to the SEM and AFM results, we found that the grafting of SS reduced the water contact angle by 43.31% and increased the surface roughness by about four times. When TPU-SS was used for HepG2 cell culture, the cell adhesion rate of TPU-SS was significantly higher than that of the general TCPS cell culture plate, and the cell proliferation rate was close to that of TCPS. FDA/EB staining showed that HepG2 cells remained a better cellular growth behavior. HepG2 cells had higher cell vitality including the albumin secretion and the intracellular total protein synthesis. Grafting SS maintained the stability of cell and significantly decreased the cytotoxicity by decreased LDH release. In conclusion, SS grafting is beneficial to cell culture in vitro, and provides a key material for bioartificial liver culture system.
Assuntos
Poliuretanos , Sericinas , Poliuretanos/química , Sericinas/farmacologia , Adesão Celular , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas de Cultura de CélulasRESUMO
The role of periosteum rich in a variety of bone cells and growth factors in the treatment of bone defects has gradually been discovered. However, due to the limited number of healthy transplantable periosteum, there are still major challenges in the clinical treatment of critical-size bone defects. Various techniques for preparing biomimetic periosteal scaffolds that are similar in composition and structure to natural periosteal scaffold have gradually emerged. This article reviews the current preparation methods of biomimetic periosteal scaffolds based on various biomaterials, which are mainly divided into natural periosteal materials and various polymer biomaterials. Several preparation methods of biomimetic periosteal scaffolds with different principles are listed, their strengths and weaknesses are also discussed. It aims to provide a more systematic perspective for the preparation of biomimetic periosteal scaffolds in the future.
Assuntos
Materiais Biocompatíveis , Periósteo , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Regeneração Óssea , OsteogêneseRESUMO
Transcatheter arterial chemoembolization (TACE) is an effective method for treating hepatocellular carcinoma (HCC). In this study, chitosan (CS), sodium glycerophosphate (GP), and sodium alginate (SA) were used as the main raw materials to develop clinically non-degradable embolization microspheres (Ms). Chitosan/sodium alginate embolization Ms. were generated using an emulsification cross-linking method. The Ms. were then uniformly dispersed in CS/GP temperature-sensitive gels to produce Gel/Ms. composite embolic agents. The results showed that Gel/Ms. had good morphology and a neatly arranged three-dimensional structure, and the Ms. dispersed in the Gel as evidenced by SEM. Furthermore, Gel/Ms. has good blood compatibility, with a hemolysis rate of ≤5 %. The cytotoxicity experiments have also proven its excellent cell compatibility. The degradation rate of Gel/Ms. was 58.869 ± 1.754 % within 4 weeks, indicating that Gel/Ms. had good degradation performance matching its drug release purpose. The Gel/Ms. adheres better at the target site than Ms. alone and releases the drug steadily over a long period, and the maximum release rate of Gel/Ms. within 8 h was 38.33 ± 1.528 %, and within 168 h was 81.266 ± 1.193 %. Overall, Gel/Ms. demonstrate better slow drug release, reduced sudden drug release, prolonged drug action time at the target site, and reduced toxic side effects on the body compared to Gel alone.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Quitosana , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Quitosana/química , Quimioembolização Terapêutica/métodos , Microesferas , Géis , Artéria Hepática/patologia , AlginatosRESUMO
Articular cartilage is essential for normal daily joint function activities. However, it is difficult for articular cartilage to repair itself after injury due to the lack of nerves and blood vessels, so an effective cartilage repair method is necessary. As a three-dimensional polymer network structure with high water content, hydrogel is a good candidate material for cartilage repair, and it is also a research hotspot in the treatment of cartilage injury. Here, a porous dual-crosslinked hydrogel containing sodium alginate (SA) and silk sericin (SS) was designed for in situ repair of cartilage damage. The degradation rate of the hydrogel was regulated by changing the content of SS to match the rate of cartilage regeneration. The hydrogel had excellent mechanical properties (compressive strength≈245 kPa, compressibility≈60%), high water content (85%-88%) and porosity(>20%), and when the content of SS is 1%, the scaffold has the best comprehensive performance. Existing excellent cytocompatibility, the scaffold can promote the adhesion and proliferation of chondrocytes while reducing inflammatory cell infiltration. The cartilage defect repair experiments in vivo showed that artificial cartilage was formed at 4 weeks with molecular structure similar to natural cartilage. It is expected to be applied to clinical cartilage repair through the dual-crosslinked three-dimensional cartilage scaffold.