Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2204289119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727985

RESUMO

Behçet's disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. However, a comprehensive understanding of immune disturbances in BD and how they contribute to BD pathogenesis is lacking. Here, we performed single-cell and bulk RNA sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy donors. We observed prominent expansion and transcriptional changes in monocytes in PBMCs from BD patients. Deciphering the monocyte heterogeneity revealed the accumulation of C1q-high (C1qhi) monocytes in BD. Pseudotime inference indicated that BD monocytes markedly shifted their differentiation toward inflammation-accompanied and C1qhi monocyte-ended trajectory. Further experiments showed that C1qhi monocytes enhanced phagocytosis and proinflammatory cytokine secretion, and multiplatform analyses revealed the significant clinical relevance of this subtype. Mechanistically, C1qhi monocytes were induced by activated interferon-γ (IFN-γ) signaling in BD patients and were decreased by tofacitinib treatment. Our study illustrates the BD immune landscape and the unrecognized contribution of C1qhi monocytes to BD hyperinflammation, showing their potential as therapeutic targets and clinical assessment indexes.


Assuntos
Síndrome de Behçet , Complemento C1q , Monócitos , Síndrome de Behçet/genética , Síndrome de Behçet/imunologia , Complemento C1q/genética , Complemento C1q/imunologia , Humanos , Monócitos/imunologia , RNA-Seq , Análise de Célula Única
2.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419596

RESUMO

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Senescência Celular/genética , Genômica , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
3.
Eur Heart J ; 44(29): 2746-2759, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377116

RESUMO

AIMS: The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS: Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION: The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.


Assuntos
Sirtuína 2 , Remodelação Vascular , Camundongos , Humanos , Animais , Idoso , Sirtuína 2/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento , Camundongos Knockout
4.
J Mol Cell Cardiol ; 177: 21-27, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827872

RESUMO

The longevity protein p66Shc is essential for the senescence signaling that is involved in heart regeneration and remodeling. However, the exact role of p66Shc in heart regeneration is unknown. In this study, we found that p66Shc deficiency decreased neonatal mouse cardiomyocyte (CM) proliferation and impeded neonatal heart regeneration after apical resection injury. RNA sequencing and functional verification demonstrated that p66Shc regulated CM proliferation by activating ß-catenin signaling. These findings reveal the critical role of p66Shc in neonatal heart regeneration and provide new insights into senescence signaling in heart regeneration.


Assuntos
Transdução de Sinais , Animais , Camundongos , Fosforilação , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
5.
Sheng Li Xue Bao ; 75(6): 946-952, 2023 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-38151356

RESUMO

Our previous study has shown that p66Shc plays an important role in the process of myocardial regeneration in newborn mice, and p66Shc deficiency leads to weakened myocardial regeneration in newborn mice. This study aims to explore the role of p66Shc protein in myocardial injury repair after myocardial infarction in adult mice, in order to provide a new target for the treatment of myocardial injury after myocardial infarction. Mouse myocardial infarction models of adult wild-type (WT) and p66Shc knockout (KO) were constructed by anterior descending branch ligation. The survival rate and heart-to-body weight ratio of two models were compared and analyzed. Masson's staining was used to identify scar area of injured myocardial tissue, and myocyte area was determined by wheat germ agglutinin (WGA) staining. TUNEL staining was used to detect the cardiomyocyte apoptosis. The protein expression of brain natriuretic peptide (BNP), a common marker of myocardial hypertrophy, was detected by Western blotting. The results showed that there was no significant difference in survival rate, myocardial scar area, myocyte apoptosis, and heart weight to body weight ratio between the WT and p66ShcKO mice after myocardial infarction surgery. Whereas the protein expression level of BNP in the p66ShcKO mice was significantly down-regulated compared with that in the WT mice. These results suggest that, unlike in neonatal mice, the deletion of p66Shc has no significant effect on myocardial injury repair after myocardial infarction in adult mice.


Assuntos
Infarto do Miocárdio , Estresse Oxidativo , Animais , Camundongos , Peso Corporal , Cicatriz/metabolismo , Camundongos Knockout , Infarto do Miocárdio/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
6.
J Mol Cell Cardiol ; 162: 43-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437878

RESUMO

Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Idoso , Envelhecimento , Doenças Cardiovasculares/etiologia , Senescência Celular , Humanos , Miócitos de Músculo Liso
7.
Circ Res ; 127(4): 486-501, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32349646

RESUMO

RATIONALE: Maintaining iron homeostasis is essential for proper cardiac function. Both iron deficiency and iron overload are associated with cardiomyopathy and heart failure via complex mechanisms. Although ferritin plays a central role in iron metabolism by storing excess cellular iron, the molecular function of ferritin in cardiomyocytes remains unknown. OBJECTIVE: To characterize the functional role of Fth (ferritin H) in mediating cardiac iron homeostasis and heart disease. METHODS AND RESULTS: Mice expressing a conditional Fth knockout allele were crossed with 2 distinct Cre recombinase-expressing mouse lines, resulting in offspring that lack Fth expression specifically in myocytes (MCK-Cre) or cardiomyocytes (Myh6-Cre). Mice lacking Fth in cardiomyocytes had decreased cardiac iron levels and increased oxidative stress, resulting in mild cardiac injury upon aging. However, feeding these mice a high-iron diet caused severe cardiac injury and hypertrophic cardiomyopathy, with molecular features typical of ferroptosis, including reduced glutathione (GSH) levels and increased lipid peroxidation. Ferrostatin-1, a specific inhibitor of ferroptosis, rescued this phenotype, supporting the notion that ferroptosis plays a pathophysiological role in the heart. Finally, we found that Fth-deficient cardiomyocytes have reduced expression of the ferroptosis regulator Slc7a11, and overexpressing Slc7a11 selectively in cardiomyocytes increased GSH levels and prevented cardiac ferroptosis. CONCLUSIONS: Our findings provide compelling evidence that ferritin plays a major role in protecting against cardiac ferroptosis and subsequent heart failure, thereby providing a possible new therapeutic target for patients at risk of developing cardiomyopathy.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Apoferritinas/deficiência , Cardiomiopatias/etiologia , Ferroptose/fisiologia , Ferro/metabolismo , Miocárdio/metabolismo , Envelhecimento , Alelos , Animais , Apoferritinas/efeitos adversos , Apoferritinas/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/prevenção & controle , Cruzamentos Genéticos , Cicloexilaminas/administração & dosagem , Glutationa/metabolismo , Insuficiência Cardíaca/etiologia , Homeostase , Hipertrofia Ventricular Esquerda/etiologia , Deficiências de Ferro , Sobrecarga de Ferro , Ferro da Dieta/efeitos adversos , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Fenilenodiaminas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
8.
Pharmacol Res ; 176: 105969, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758400

RESUMO

Multiple sclerosis (MS) is a Th cell-mediated inflammatory demyelinating autoimmune disease. MS cannot be cured, and long-term drug treatment is still needed for MS patients. In this study, we examined the effect of belinostat, a pan-histone deacetylase inhibitor (HDACi), on experimental autoimmune encephalomyelitis (EAE) and elucidated its mechanism of action. We found that belinostat alleviates the clinical symptoms, histopathological central nervous system (CNS) inflammation and demyelination outcomes in EAE mice. Compared to the MS oral drug dimethyl fumarate (DMF) (100 mg/kg), belinostat (30 mg/kg) treatment exhibited better efficacy in improving the clinical symptoms of EAE mice. Belinostat treatment significantly suppressed the activation of M1 microglia and the proinflammatory cytokine expression; but it had no effects on the M2 microglial polarization. Belinostat also decreased both NO and iNOS levels in LPS-stimulated BV2 microglia. Accordingly, belinostat treatment of EAE mice significantly inhibited activation of the TLR2/MyD88 signaling pathway and downregulated the expression of HDAC3 while upregulating the acetylated NF-κB p65 levels. Taken together, these data demonstrate for the first time that belinostat ameliorates EAE in mice through inhibiting neuroinflammation via suppressing M1 microglial polarization, and implicating belinostat as a potential candidate for the treatment of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
9.
Proteomics ; 20(19-20): e2000049, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864800

RESUMO

Lysine crotonylation (Kcr) is a recently discovered post-translational modification that potentially regulates multiple biological processes. With an objective to expand the available crotonylation datasets, LC-MS/MS is performed using mouse liver samples under normal physiological conditions to obtain in vivo crotonylome. A label-free strategy is used and 10 034 Class I (localization probabilities > 0.75) crotonylated sites are identified in 2245 proteins. The KcrE, KcrD, and EKcr motifs are significantly enriched in the crotonylated peptides. The identified crotonylated proteins are mostly enzymes and primarily located in the cytoplasm and nucleus. Functional enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes shows that the crotonylated proteins are closely related to the purine-containing compound metabolic process, ribose phosphate metabolic process, carbon metabolism pathway, ribosome pathway, and a series of metabolism-associated biological processes. To the best of the authors' knowledge, this research provides the first report on the mouse liver crotonylome. Furthermore, it offers additional evidence that crotonylation exists in non-histone proteins, and is likely involved in various biological processes. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifiers PXD019145.


Assuntos
Lisina , Proteoma , Animais , Cromatografia Líquida , Fígado/metabolismo , Lisina/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Espectrometria de Massas em Tandem
10.
Cardiovasc Drugs Ther ; 34(5): 641-650, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564302

RESUMO

PURPOSE: Advancing age is the major risk factor for thoracic aortic aneurysm/dissection (TAAD). However, the causative link between age-related molecules and TAAD remains elusive. Here, we investigated the role of Sirtuin 1 (SIRT1, also known as class III histone deacetylase), the best studied member of the longevity-related Sirtuin family, in TAAD development in vivo. METHODS: We used male smooth muscle-specific SIRT1 transgenic (ST-Tg) mice, smooth muscle-specific SIRT1 knockout (ST-KO) mice, and their wild-type (WT) littermates on a C57BL/6J background to establish a TAAD model induced by oral administration of 3-aminopropionitrile fumarate (BAPN). We analyzed the incidence and fatality rates of TAAD in the groups. We examined matrix metallopeptidase 2 (MMP2) and MMP9 expression in aortas or cultured A7r5 cells via western blotting and real-time polymerase chain reaction (PCR). We performed chromatin immunoprecipitation (ChIP) to clarify the epigenetic mechanism of SIRT1-regulated MMP2 expression in vascular smooth muscle cells (VSMCs). RESULTS: BAPN treatment markedly increased the incidence of TAAD in WT mice but caused less disease in ST-Tg mice. Moreover, ST-KO mice had the highest BAPN-induced TAAD fatality rate of all the groups. Mechanistically, SIRT1 overexpression resulted in lower MMP2 and MMP9 expression after BAPN treatment in both mouse aortas and cultured A7r5 cells. The downregulation of BAPN-induced MMP2 expression by SIRT1 was mediated by deacetylation of histone H3 lysine 9 (H3K9) on the Mmp2 promoter in the A7r5 cells. CONCLUSION: Our findings suggest that SIRT1 expression in SMCs protects against TAAD and could be a novel therapeutic target for TAAD management.


Assuntos
Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Sirtuína 1/metabolismo , Acetilação , Dissecção Aórtica/enzimologia , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Linhagem Celular , Modelos Animais de Doenças , Histonas/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Sirtuína 1/genética
11.
Circulation ; 136(23): 2271-2283, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28978552

RESUMO

BACKGROUND: Abnormal amino acid metabolism is associated with vascular disease. However, the causative link between dysregulated tryptophan metabolism and abdominal aortic aneurysm (AAA) is unknown. METHODS: Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism. Mice with deficiencies in both apolipoprotein e (Apoe) and IDO (Apoe-/-/IDO-/-) were generated by cross-breeding IDO-/- mice with Apoe-/- mice. RESULTS: The acute infusion of angiotensin II markedly increased the incidence of AAA in Apoe-/- mice, but not in Apoe-/-/IDO-/- mice, which presented decreased elastic lamina degradation and aortic expansion. These features were not altered by the reconstitution of bone marrow cells from IDO+/+ mice. Moreover, angiotensin II infusion instigated interferon-γ, which induced the expression of IDO and kynureninase and increased 3-hydroxyanthranilic acid (3-HAA) levels in the plasma and aortas of Apoe-/- mice, but not in IDO-/- mice. Both IDO and kynureninase controlled the production of 3-HAA in vascular smooth muscle cells. 3-HAA upregulated matrix metallopeptidase 2 via transcription factor nuclear factor-κB. Furthermore, kynureninase knockdown in mice restrained 3-HAA, matrix metallopeptidase 2, and resultant AAA formation by angiotensin II infusion. Intraperitoneal injections of 3-HAA into Apoe-/- and Apoe-/-/IDO-/- mice for 6 weeks increased the expression and activity of matrix metallopeptidase 2 in aortas without affecting metabolic parameters. Finally, human AAA samples had stronger staining with the antibodies against 3-HAA, IDO, and kynureninase than those in adjacent nonaneurysmal aortic sections of human AAA samples. CONCLUSIONS: These data define a previously undescribed causative role for 3-HAA, which is a product of tryptophan metabolism, in AAA formation. Furthermore, these findings suggest that 3-HAA reduction may be a new target for treating cardiovascular diseases.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Angiotensina II , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Triptofano/metabolismo , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Transplante de Medula Óssea , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Genótipo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Fenótipo , Fatores de Tempo
12.
Circulation ; 136(21): 2051-2067, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28947430

RESUMO

BACKGROUND: Pathological cardiac hypertrophy induced by stresses such as aging and neurohumoral activation is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the roles of SIRT2 in aging-related and angiotensin II (Ang II)-induced pathological cardiac hypertrophy. METHODS: Male C57BL/6J wild-type and Sirt2 knockout mice were subjected to the investigation of aging-related cardiac hypertrophy. Cardiac hypertrophy was also induced by Ang II (1.3 mg/kg/d for 4 weeks) in male C57BL/6J Sirt2 knockout mice, cardiac-specific SIRT2 transgenic (SIRT2-Tg) mice, and their respective littermates (8 to ≈12 weeks old). Metformin (200 mg/kg/d) was used to treat wild-type and Sirt2 knockout mice infused with Ang II. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: SIRT2 protein expression levels were downregulated in hypertrophic hearts from mice. Sirt2 knockout markedly exaggerated cardiac hypertrophy and fibrosis and decreased cardiac ejection fraction and fractional shortening in aged (24-month-old) mice and Ang II-infused mice. Conversely, cardiac-specific SIRT2 overexpression protected the hearts against Ang II-induced cardiac hypertrophy and fibrosis and rescued cardiac function. Mechanistically, SIRT2 maintained the activity of AMP-activated protein kinase (AMPK) in aged and Ang II-induced hypertrophic hearts in vivo as well as in cardiomyocytes in vitro. We identified the liver kinase B1 (LKB1), the major upstream kinase of AMPK, as the direct target of SIRT2. SIRT2 bound to LKB1 and deacetylated it at lysine 48, which promoted the phosphorylation of LKB1 and the subsequent activation of LKB1-AMPK signaling. Remarkably, the loss of SIRT2 blunted the response of AMPK to metformin treatment in mice infused with Ang II and repressed the metformin-mediated reduction of cardiac hypertrophy and protection of cardiac function. CONCLUSIONS: SIRT2 promotes AMPK activation by deacetylating the kinase LKB1. Loss of SIRT2 reduces AMPK activation, promotes aging-related and Ang II-induced cardiac hypertrophy, and blunts metformin-mediated cardioprotective effects. These findings indicate that SIRT2 will be a potential target for therapeutic interventions in aging- and stress-induced cardiac hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Metformina/farmacologia , Miocárdio/enzimologia , Sirtuína 2/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Fatores Etários , Envelhecimento/metabolismo , Angiotensina II , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Predisposição Genética para Doença , Lisina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Fenótipo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 2/deficiência , Sirtuína 2/genética , Volume Sistólico/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
14.
Circ Res ; 119(10): 1076-1088, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27650558

RESUMO

RATIONALE: Uncontrolled growth of abdominal aortic aneurysms (AAAs) is a life-threatening vascular disease without an effective pharmaceutical treatment. AAA incidence dramatically increases with advancing age in men. However, the molecular mechanisms by which aging predisposes individuals to AAAs remain unknown. OBJECTIVE: In this study, we investigated the role of SIRT1 (Sirtuin 1), a class III histone deacetylase, in AAA formation and the underlying mechanisms linking vascular senescence and inflammation. METHODS AND RESULTS: The expression and activity of SIRT1 were significantly decreased in human AAA samples. SIRT1 in vascular smooth muscle cells was remarkably downregulated in the suprarenal aortas of aged mice, in which AAAs induced by angiotensin II infusion were significantly elevated. Moreover, vascular smooth muscle cell-specific knockout of SIRT1 accelerated angiotensin II-induced formation and rupture of AAAs and AAA-related pathological changes, whereas vascular smooth muscle cell-specific overexpression of SIRT1 suppressed angiotensin II-induced AAA formation and progression in Apoe-/- mice. Furthermore, the inhibitory effect of SIRT1 on AAA formation was also proved in a calcium chloride (CaCl2)-induced AAA model. Mechanistically, the reduction of SIRT1 was shown to increase vascular cell senescence and upregulate p21 expression, as well as enhance vascular inflammation. Notably, inhibition of p21-dependent vascular cell senescence by SIRT1 blocked angiotensin II-induced nuclear factor-κB binding on the promoter of monocyte chemoattractant protein-1 and inhibited its expression. CONCLUSIONS: These findings provide evidence that SIRT1 reduction links vascular senescence and inflammation to AAAs and that SIRT1 in vascular smooth muscle cells provides a therapeutic target for the prevention of AAA formation.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Aortite/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuína 1/fisiologia , Envelhecimento/metabolismo , Aneurisma Roto/etiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/metabolismo , Aortite/patologia , Apolipoproteínas E/deficiência , Cloreto de Cálcio/toxicidade , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/patologia , NF-kappa B/metabolismo , Sirtuína 1/deficiência , Sirtuína 1/genética
15.
Arterioscler Thromb Vasc Biol ; 37(2): 291-300, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27908891

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening vascular pathology, the pathogenesis of which is closely related to oxidative stress. However, an effective pharmaceutical treatment is lacking because the exact cause of AAA remains unknown. Here, we aimed at delineating the role of the paraoxonases (PONs) gene cluster (PC), which prevents atherosclerosis through the detoxification of oxidized substrates, in AAA formation. APPROACH AND RESULTS: PC transgenic (Tg) mice were crossed to an Apoe-/- background, and an angiotensin II-induced AAA mouse model was used to analyze the effect of the PC on AAA formation. Four weeks after angiotensin II infusion, PC-Tg Apoe-/- mice had a lower AAA incidence, smaller maximal abdominal aortic external diameter, and less medial elastin degradation than Apoe-/- mice. Importantly, PC-Tg Apoe-/- mice exhibited lower aortic reactive oxidative species production and oxidative stress than did the Apoe-/- control mice. As a consequence, the PC transgene alleviated angiotensin II-induced arterial inflammation and suppressed arterial extracellular matrix degradation. Specifically, on angiotensin II stimulation, PC-Tg vascular smooth muscle cells exhibited lower levels of reactive oxidative species production and a decrease in the activities and expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. Moreover, PC-Tg serum also enhanced vascular smooth muscle cell oxidative stress resistance and further decreased the expression levels of matrix metalloproteinase-2 and matrix metalloproteinase-9, indicating that circulatory and vascular smooth muscle cell PC members suppress oxidative stress in a synergistic manner. CONCLUSIONS: Our findings reveal, for the first time, a protective role of the PC in AAA formation and suggest PONs as promising targets for AAA prevention.


Assuntos
Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/prevenção & controle , Arildialquilfosfatase/genética , Família Multigênica , Angiotensina II , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arildialquilfosfatase/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Elastina/metabolismo , Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Estresse Oxidativo , Fenótipo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Adv Exp Med Biol ; 1086: 55-75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30232752

RESUMO

Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.


Assuntos
Envelhecimento/genética , Epigênese Genética , Doenças Vasculares/genética , Senescência Celular , Metilação de DNA , Humanos
17.
Eur Heart J ; 38(18): 1389-1398, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27099261

RESUMO

AIMS: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. METHODS AND RESULTS: Male C57BL/6 Sirt4 knockout mice, transgenic (Tg) mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II, 1.1 mg/kg/day). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analysed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-Tg mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with manganese 5, 10, 15, 20-tetrakis-(4-benzoic acid) porphyrin, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. CONCLUSIONS: Sirt4 promotes hypertrophic growth, the generation of fibrosis and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Assuntos
Cardiomegalia/enzimologia , Proteínas Mitocondriais/fisiologia , Sirtuínas/fisiologia , Superóxido Dismutase/antagonistas & inibidores , Angiotensina II/farmacologia , Animais , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Remodelação Vascular/fisiologia , Vasoconstritores/farmacologia
19.
Clin Sci (Lond) ; 131(16): 2063-2078, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739840

RESUMO

Mitochondria are heterogeneous and essentially contribute to cellular functions and tissue homeostasis. Mitochondrial dysfunction compromises overall cell functioning, tissue damage, and diseases. The advances in mitochondrion biology increase our understanding of mitochondrial dynamics, bioenergetics, and redox homeostasis, and subsequently, their functions in tissue homeostasis and diseases, including cardiometabolic diseases (CMDs). The functions of mitochondria mainly rely on the enzymes in their matrix. Sirtuins are a family of NAD+-dependent deacylases and ADP-ribosyltransferases. Three members of the Sirtuin family (SIRT3, SIRT4, and SIRT5) are located in the mitochondrion. These mitochondrial Sirtuins regulate energy and redox metabolism as well as mitochondrial dynamics in the mitochondrial matrix and are involved in cardiovascular homeostasis and CMDs. In this review, we discuss the advances in our understanding of mitochondrial Sirtuins in mitochondrion biology and CMDs, including cardiac remodeling, pulmonary artery hypertension, and vascular dysfunction. The potential therapeutic strategies by targetting mitochondrial Sirtuins to improve mitochondrial function in CMDs are also addressed.


Assuntos
Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sirtuínas/fisiologia , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Endotélio Vascular/fisiopatologia , Ácidos Graxos/metabolismo , Cardiopatias/tratamento farmacológico , Humanos , Hipertensão Pulmonar/metabolismo , Corpos Cetônicos/metabolismo , Terapia de Alvo Molecular/métodos , Oxirredução , Estresse Oxidativo/fisiologia , Remodelação Ventricular/fisiologia
20.
Arterioscler Thromb Vasc Biol ; 36(1): 49-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26543095

RESUMO

OBJECTIVES: Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. APPROACH AND RESULTS: Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. CONCLUSIONS: These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteoglicanas/deficiência , Animais , Antígenos/genética , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Células Espumosas/patologia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Obesidade/genética , Obesidade/metabolismo , Placa Aterosclerótica , Proteoglicanas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa