RESUMO
The human skeletal muscle drives skeletal movement through contraction. Embedding its functional information into the human morphological framework and constructing a digital twin of skeletal muscle for simulating physical and physiological functions of skeletal muscle are of great significance for the study of "virtual physiological humans". Based on relevant literature both domestically and internationally, this paper firstly summarizes the technical framework for constructing skeletal muscle digital twins, and then provides a review from five aspects including skeletal muscle digital twins modeling technology, skeletal muscle data collection technology, simulation analysis technology, simulation platform and human medical image database. On this basis, it is pointed out that further research is needed in areas such as skeletal muscle model generalization, accuracy improvement, and model coupling. The methods and means of constructing skeletal muscle digital twins summarized in the paper are expected to provide reference for researchers in this field, and the development direction pointed out can serve as the next focus of research.
Assuntos
Movimento , Tecnologia , Humanos , Simulação por Computador , Bases de Dados Factuais , Músculo EsqueléticoRESUMO
Metaheuristic algorithms, widely applied across various domains due to their simplicity and strong optimization capabilities, play a crucial role in problem-solving. While the Aquila Optimizer is recognized for its effectiveness, it often exhibits slow convergence rates and susceptibility to local optima in certain scenarios. To address these concerns, this paper introduces an enhanced version, termed Tent-enhanced Aquila Optimizer (TEAO). TEAO incorporates the Tent chaotic map to initialize the Aquila population, promoting a more uniform distribution within the solution space. To balance exploration and exploitation, novel formulas are proposed, accelerating convergence while ensuring precision. The effectiveness of the TEAO algorithm is validated through a comprehensive comparison with 14 state-of-the-art algorithms using 23 classical benchmark test functions. Additionally, to assess the practical feasibility of the approach, TEAO is applied to six constrained engineering problems and benchmarked against the performance of the same 14 algorithms. All experimental results consistently demonstrate that TEAO outperforms other advanced algorithms in terms of solution quality and stability, establishing it as a more competitive choice for optimization tasks.
RESUMO
The electrohydraulic valve system can realize continuous variable valve timing and lift using the flexibility of liquid. However, the existing electrohydraulic valve systems usually rely on a high-speed solenoid valve to control the on and off states of the hydraulic circuit, which pushes up the system cost. This paper introduces a continuous hydraulic variable valve timing and lift system with adjustable volume (CVVTL). Unlike the other electrohydraulic valve systems, the CVVTL does not need a high-frequency servo valve to control each valve but adjusts the valve timing and lift by controlling the system volume. However, the maximum operating speed of hydraulic variable valve systems is limited by the inherent pressure fluctuation. To relax the limit, the authors further studied the pressure fluctuation features of the CVVTL system under various conditions and summarized the harms of the fluctuation. After identifying the causes of pressure fluctuation of the CVVTL system, the authors came up with systematic countermeasures to system pressure fluctuation.
RESUMO
Micro-arc discharge events and dielectric breakdown of oxide films play an important role in the formation process of plasma electrolytic oxidation coating. Single pulse anodization of micro-electrodes was employed to study the discharge behavior and dielectric breakdown of oxide films deposited on aluminum in an alkaline silicate electrolyte. Voltage and current waveforms of applied pulses were measured and surface morphology of micro-electrodes was characterized from images obtained using scanning electron microscope (SEM). A feasible identification method for the critical breakdown voltage of oxide film was introduced. Different current transients of voltage pulses were obtained, depending on applied pulse voltage and duration. In addition, the active capacitive effect and complex non-linear nature of plasma electrolytic oxidation process is confirmed using dynamic electrical characteristic curves. A good correlation between the pulse parameters and shape of discharge channels was observed. Circular opened pores were found to close with increasing potential and pulse width. Finally, the characteristic parameters of a single discharge event were estimated.
RESUMO
Plasma electrolytic oxidation processing is a novel promising surface modification approach for various materials. However, its large-scale application is still restricted, mainly due to the problem of high energy consumption of the plasma electrolytic oxidation processing. In order to solve this problem, a novel intelligent self-adaptive control technology based on real-time active diagnostics and on the precision adjustment of the process parameters was developed. Both the electrical characteristics of the plasma electrolytic oxidation process and the microstructure of the coating were investigated. During the plasma electrolytic oxidation process, the discharges are maintained in the soft-sparking regime and the coating exhibits a good uniformity and compactness. A total specific energy consumption of 1.8 kW h m-2 µm-1 was achieved by using such self-adaptive plasma electrolytic oxidation processing on pre-anodized 6061 aluminum alloy samples.