Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(24): 4633-4645.e9, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134886

RESUMO

Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and single-base resolution manner remains challenging. Here, we develop a pooled prime-editing screen method, PRIME, that can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated single-base resolution analysis. Next, we applied PRIME to functionally characterize 1,304 genome-wide association study (GWAS)-identified non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate that PRIME is capable of characterizing genetic variants at single-base resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Genoma Humano/genética , Reprodutibilidade dos Testes , Sequências Reguladoras de Ácido Nucleico , DNA , Edição de Genes/métodos , Sistemas CRISPR-Cas
2.
Am J Hum Genet ; 111(5): 990-995, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636510

RESUMO

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.


Assuntos
Frequência do Gene , Genótipo , Polimorfismo de Nucleotídeo Único , Software , Humanos , Estudos de Coortes , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Genoma Humano , Controle de Qualidade , Aprendizado de Máquina , Sequenciamento Completo do Genoma/normas , Sequenciamento Completo do Genoma/métodos
3.
PLoS Genet ; 19(5): e1010517, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216410

RESUMO

Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features-referred to as canonical variables (CVs)-within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits.


Assuntos
Análise de Correlação Canônica , Proteômica , Humanos , Proteômica/métodos , Multiômica , Estudos de Coortes
4.
Am J Hum Genet ; 109(11): 1986-1997, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198314

RESUMO

Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Calibragem , Genótipo , Aprendizado de Máquina
5.
Am J Hum Genet ; 109(6): 1175-1181, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504290

RESUMO

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Povo Asiático , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
6.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819065

RESUMO

KDM6B-mediated epigenetic modification of the testicular regulator Dmrt1 has previously been identified as the primary switch of the male pathway in a temperature-dependent sex-determination (TSD) system; however, the molecular network of the female pathway has not yet been established. Here, we have functionally characterized for the first time an upstream regulator of the female pathway, the forkhead transcription factor FOXL2, in Trachemys scripta, a turtle species with a TSD system. FOXL2 exhibited temperature-dependent female-specific expression patterns before the onset of gonadal differentiation and was preferentially localized in ovarian somatic cells. Foxl2 responded rapidly to temperature shifts and estrogen. Importantly, forced expression of Foxl2 at the male-producing temperature led to male-to-female sex reversal, as evidenced by the formation of an ovary-like structure, and upregulation of the ovarian regulators Cyp19a1 and R-spondin1. Additionally, knockdown of Foxl2 caused masculinization at the female-producing temperature, which was confirmed by loss of the female phenotype, development of seminiferous tubules, and elevated expression of Dmrt1 and Sox9. Collectively, we demonstrate that Foxl2 expression is necessary and sufficient to drive ovarian determination in T. scripta, suggesting a crucial role of Foxl2 in female sex determination in the TSD system.


Assuntos
Tartarugas , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Temperatura , Tartarugas/genética
7.
PLoS Genet ; 18(1): e1009984, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100265

RESUMO

Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Moreover, PIRs of cell-type-specific SIPs show enriched heritability of relevant blood cell trait (s), and are more enriched with GWAS variants associated with blood cell traits compared to PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type. Importantly, SIP subnetworks incorporating cell-type-specific SIPs and ATAC-seq peaks help interpret GWAS variants. Examples include GWAS variants associated with platelet count near the megakaryocyte SIP gene EPHB3 and variants associated lymphocyte count near the native CD4 T-Cell SIP gene ETS1. Interestingly, around 25.7% ~ 39.6% blood cell traits GWAS variants residing in SIP PIR regions disrupt transcription factor binding motifs. Importantly, our analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions.


Assuntos
Células Sanguíneas/metabolismo , Linhagem da Célula/genética , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Estudo de Associação Genômica Ampla , Humanos , Proteína Proto-Oncogênica c-ets-1/genética , Receptor EphB3/genética
8.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634879

RESUMO

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

9.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432502

RESUMO

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Assuntos
Coração , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Mamíferos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Regeneração , Coração/fisiologia
10.
J Am Chem Soc ; 146(20): 13894-13902, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728606

RESUMO

Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.

11.
J Am Chem Soc ; 146(10): 7052-7062, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427585

RESUMO

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Assuntos
DNA Catalítico , RNA Catalítico , Sequência de Bases , Magnésio , DNA Catalítico/química , DNA , RNA/química , Íons , Conformação de Ácido Nucleico , Catálise , RNA Catalítico/metabolismo
12.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537557

RESUMO

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Assuntos
Yarrowia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
13.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657444

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Pulmão , Proteínas de Membrana , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Camundongos , Camundongos Knockout , Apoptose , Masculino
14.
Small ; 20(22): e2307726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126679

RESUMO

The guided-growth strategy has been widely explored and proved its efficacy in fabricating surface micro/nanostructures in a variety of systems. However, soft materials like polymers are much less investigated partly due to the lack of strong internal driving mechanisms. Herein, the possibility of utilizing liquid crystal (LC) ordering of smectic liquid crystal polymers (LCPs) to induce guided growth of surface topography during the formation of electrohydrodynamic (EHD) patterns is demonstrated. In a two-stage growth, regular stripes are first found to selectively emerge from the homogeneously aligned region of an initially flat LCP film, and then extend neatly along the normal direction of the boundary line between homogeneous and homeotropic alignments. The stripes can maintain their directions for quite a distance before deviating. Coupled with the advanced tools for controlling LC alignment, intricate surface topographies can be produced in LCP films starting from relatively simple designs. The regularity of grown pattern is determined by the LC ordering of the polymer material, and influenced by conditions of EHD growth. The proposed approach provides new opportunities to employ LCPs in optical and electrical applications.

15.
Small ; : e2403201, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016938

RESUMO

Immune checkpoint inhibitors, are the fourth most common therapeutic tool after surgery, chemotherapy, and radiotherapy for colorectal cancer (CRC). However, only a small proportion (≈5%) of CRC patients, those with "hot" (immuno-activated) tumors, benefit from the therapy. Pyroptosis, an innovative form of programmed cell death, is a potentially effective means to mediate a "cold" to "hot" transformation of the tumor microenvironment (TME). Calcium-releasing hydroxyapatite (HAP) nanoparticles (NPs) trigger calcium overload and pyroptosis in tumor cells. However, current limitations of these nanomedicines, such as poor tumor-targeting capabilities and insufficient calcium (Ca) ion release, limit their application. In this study, chondroitin sulfate (CS) is used to target tumors via binding to CD44 receptors and kaempferol (KAE) is used as a Ca homeostasis disruptor to construct CS-HAP@KAE NPs that function as pyroptosis inducers in CRC cells. CS-HAP@KAE NPs bind to the tumor cell membrane, HAP released Ca in response to the acidic environment of the TME, and kaempferol (KAE) enhances the influx of extracellular Ca, resulting in intracellular Ca overload and pyroptosis. This is associated with excessive endoplasmic reticulum stress triggered activation of the stimulator of interferon genes/interferon regulatory factor 3 pathway, ultimately transforming the TME from "cold" to "hot".

16.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35753702

RESUMO

Spatial transcriptomics (ST) technologies allow researchers to examine transcriptional profiles along with maintained positional information. Such spatially resolved transcriptional characterization of intact tissue samples provides an integrated view of gene expression in its natural spatial and functional context. However, high-throughput sequencing-based ST technologies cannot yet reach single cell resolution. Thus, similar to bulk RNA-seq data, gene expression data at ST spot-level reflect transcriptional profiles of multiple cells and entail the inference of cell-type composition within each ST spot for valid and powerful subsequent analyses. Realizing the critical importance of cell-type decomposition, multiple groups have developed ST deconvolution methods. The aim of this work is to review state-of-the-art methods for ST deconvolution, comparing their strengths and weaknesses. In particular, we construct ST spots from single-cell level ST data to assess the performance of 10 methods, with either ideal reference or non-ideal reference. Furthermore, we examine the performance of these methods on spot- and bead-level ST data by comparing estimated cell-type proportions to carefully matched single-cell ST data. In comparing the performance on various tissues and technological platforms, we concluded that RCTD and stereoscope achieve more robust and accurate inferences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos
17.
Hepatology ; 78(2): 389-396, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815353

RESUMO

BACKGROUND AND AIMS: Genetics plays a role in the pathogenesis of intrahepatic cholestasis of pregnancy (ICP); however, empirical evidence on familial clustering of ICP is scarce. We aimed to assess the extent of familial recurrence of ICP. APPROACH AND RESULTS: This population-based cohort study included all 668,461 primiparous women who gave birth between 1995 and 2018 in Denmark. Women diagnosed with ICP were included to the index cohort. Kinship with index women was determined with the Danish Civil Registration System. Log-binomial regression was used to calculate the relative recurrence risk (RRR) of ICP in relatives of index women. A total of 6722 (1.0%) primiparous women were diagnosed with ICP. In co-twins (n=57), first-degree (n=2279), second-degree (n=1373), and third-degree (n=1758) relatives of the index women, the incidence of ICP reached 5.3%, 2.6%, 0.7%, and 1.4%, respectively, corresponding to adjusted RRRs of 4.82 (95% CI, 1.60-14.48), 2.54 (1.98-3.26), 0.81 (0.44-1.51), and 1.15 (0.77-1.71), respectively. The first-degree relatives of women who had recurrent ICP or first-trimester ICP seemed to be at higher risks [RRR, 4.30 (2.85-6.48), 3.04 (1.93-4.77), respectively]. A minor increased risk was observed in nonbiological relatives [RRR, 1.35 (1.05-1.73); n=4274, including women's full-brothers' partner and women's husbands' full sisters]. CONCLUSIONS: Co-twins and first-degree relatives of ICP patients were at ~5- and ~2.5-fold increased risk of ICP, respectively. No increased risk was observed in second-degree and third-degree relatives. Recurrent ICP and first-trimester ICP might indicate a higher degree of family clustering. Further investigation is needed to investigate the increased risk of ICP in nonbiological relatives.


Assuntos
Colestase Intra-Hepática , Complicações na Gravidez , Masculino , Gravidez , Humanos , Feminino , Estudos de Coortes , Fatores de Risco , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Colestase Intra-Hepática/epidemiologia , Colestase Intra-Hepática/genética , Análise por Conglomerados , Dinamarca/epidemiologia
18.
Opt Express ; 32(8): 13965-13977, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859354

RESUMO

Light polarization rotations, created by applied optical field, are examined experimentally and theoretically in a photosensitive chiral nematic fluid. The polarization rotation of the transmitted beam is initiated by illuminating the sample with uniform UV light. The operation is tunable and reversible, depending on the UV intensity. It was revealed that the rotations can be ascribed to the optical-field-induced chirality effect, where the helical structure in chiral nematics changes in accordance with the UV intensity. The evolution of the helical structure as well as its effect on the light polarization upon illumination by uniform UV light have been monitored experimentally and compared by calculations based on the continuum theory. Our results proved that a polarization field with specific characteristics can be achieved using the remote and precise optical control.

19.
Exp Dermatol ; 33(1): e14956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846942

RESUMO

Aging is a normal and complex biological process. Skin is located in the most superficial layer of the body, and its degree of aging directly reflects the aging level of the body. Endoplasmic reticulum stress refers to the aggregation of unfolded or misfolded proteins in the endoplasmic reticulum and the disruption of the calcium ion balance when cells are stimulated by external stimuli. Mild endoplasmic reticulum stress can cause a series of protective mechanisms, including the unfolded protein response, while sustained high intensity stimulation leads to endoplasmic reticulum stress and eventually apoptosis. Photoaging caused by ultraviolet radiation is an important stimulus in skin aging. Many studies have focused on oxidative stress, but increasing evidence shows that endoplasmic reticulum stress plays an important role in photoaging. This paper reviews the development and mechanism of endoplasmic reticulum stress (ERS) in skin photoaging, and provides research directions for targeting the ERS pathway to slow aging.


Assuntos
Envelhecimento da Pele , Dermatopatias , Humanos , Raios Ultravioleta , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Pele/metabolismo , Dermatopatias/metabolismo , Apoptose
20.
Macromol Rapid Commun ; : e2400261, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805189

RESUMO

Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa