RESUMO
Decidual macrophages residing at the maternal-fetal interface have been recognized as pivotal factors for maintaining normal pregnancy; however, they are also key target cells of Toxoplasma gondii (T. gondii) in the pathology of T. gondii-induced adverse pregnancy. Trem2, as a functional receptor on macrophage surface, recognizes and binds various kinds of pathogens. The role and underlying mechanism of Trem2 in T. gondii infection remain elusive. In the present study, we found that T. gondii infection downregulated Trem2 expression and that Trem2-/- mice exhibited more severe adverse pregnancy outcomes than wildtype mice. We also demonstrated that T. gondii infection resulted in increased decidual macrophages, which were significantly reduced in the Trem2-/- pregnant mouse model as compared to wildtype control animals. We further described the inhibited proliferation, migration, and invasion functions of trophoblast cell by T. gondii antigens through macrophages as an "intermediate bridge", while this inhibition can be rescued by Trem2 agonist HSP60. Concurrently, Trem2 deficiency in bone marrow-derived macrophages (BMDMs) heightened the inhibitory effect of TgAg on the migration and invasion of trophoblast cells, accompanied by higher pro-inflammatory factors (IL-1ß, IL-6 and TNF-α) but a lower chemokine (CXCL1) in T. gondii antigens-treated BMDMs. Furthermore, compelling evidence from animal models and in vitro cell experiments suggests that T. gondii inhibits the Trem2-Syk-PI3K signaling pathway, leading to impaired function of decidual macrophages. Therefore, our findings highlight Trem2 signaling as an essential pathway by which decidual macrophages respond to T. gondii infection, suggesting Trem2 as a crucial sensor of decidual macrophages and potential therapeutic target in the pathology of T. gondii-induced adverse pregnancy.
Assuntos
Decídua , Macrófagos , Glicoproteínas de Membrana , Transdução de Sinais , Toxoplasma , Toxoplasmose , Animais , Feminino , Camundongos , Gravidez , Decídua/imunologia , Decídua/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/parasitologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/parasitologia , Resultado da Gravidez , Receptores Imunológicos/metabolismo , Quinase Syk/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Trofoblastos/parasitologia , Trofoblastos/metabolismo , Trofoblastos/imunologiaRESUMO
Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.
Assuntos
Fator 3 Ativador da Transcrição , Proteínas de Helminto , Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Schistosoma japonicum , Esquistossomose Japônica , Animais , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/parasitologia , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/genética , Cirrose Hepática/parasitologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Actinas/metabolismo , Actinas/genética , Linhagem Celular , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Modelos Animais de Doenças , Antígenos de HelmintosRESUMO
Precise mapping and regulation of cell surface receptors hold immense significance in disease treatment, such as cancer, infection, and neurodisorders, but also face enormous challenges. In this study, we designed a series of adjustable multivalent aptamer-based DNA nanostructures to precisely control their interaction with receptors in tumor cells. By profiling surface receptors on 12 cell lines using 10 different aptamers, we generated a heatmap that accurately distinguished between various tumor types based on multiple markers. We then incorporated these aptamers onto DNA origami structures to regulate receptor recognition, with patch-like structures demonstrating a tendency to be trapped on the cell surface and with tube-like structures showing a preference for internalization. Through precise control of aptamer species, valence, and geometric patterns, we found that multiheteroreceptor-mediated recognition not only favored the specific binding of nanostructures to tumor cells but also greatly enhanced intracellular uptake by promoting clathrin-dependent endocytosis. Specifically, we achieved over 5-fold uptake in different tumor cells versus normal cells using tube-like structures modified with different diheteroaptamer pairs, facilitating targeted drug delivery. Moreover, patch-like structures with triheteroaptamers guided specific interactions between macrophages and tumor cells, leading to effective immune clearance. This programmable multivalent system allows for the precise regulation of cell recognition using multiple parameters, demonstrating great potential for personalized tumor treatment.
Assuntos
Aptâmeros de Nucleotídeos , Nanoestruturas , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , DNA/química , Linhagem Celular TumoralRESUMO
In inverted perovskite solar cells, conventional planar 2D/3D perovskite heterojunctions typically exhibit a type-II band alignment, where the electric field tends to drive the electron motion in the opposite direction to the direction of electron transfer. Here, a 2D/3D gradient heterojunction is developed by allowing the 2D perovskite to infiltrate the 3D perovskite surface along the grain boundaries using the interaction between the organic cation of the 2D perovskite and the pseudohalogen thiocyanate ion (SCN-), which has the ability to diffuse downward. The infiltrated 2D perovskite not only fills the gaps of grain boundaries with improved structural stability, but it also reconstructs the original landscape of the electric field toward the n-doped surface to enable more rapid electron transfer and weaken the adverse type-II band alignment effect. Since 2D perovskite seals the GBs, the nonvolatile SCN- can accumulate at the top and bottom dual interfaces, releasing residual stress and significantly inhibiting nonradiative recombination. The device exhibits an excellent efficiency of 24.76% (certified 24.29%) and long-term stability that is >90% of the original PCE value after 800 h of heating at 85 °C or in high humidity (≈65%).
RESUMO
BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.
Assuntos
Fatores de Transcrição Forkhead , MicroRNAs , Toxoplasmose , Animais , Feminino , Camundongos , Gravidez , Regiões 3' não Traduzidas , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Resultado da Gravidez , Linfócitos T Reguladores/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Toxoplasmose/genética , Toxoplasmose/metabolismoRESUMO
BACKGROUND: Pear yield is a primary source of income for smallholder farmers in China, yet significant yield disparities exist among different smallholders. Systematic analyses of limiting factors and the feasibility of solutions at the smallholder level are limited. This study employs a novel DEED (Describe, Explain, Explore, and Design) research cycle centered on smallholders to formulate yield-improving strategies. RESULTS: A comprehensive survey of 173 smallholders in the Yangtze River pear district, encompassing Zhejiang province, Jiangxi province, and Shanghai city, was conducted to delineate the current yield status. The boundary line analysis model was applied to elucidate the contributions of various yield-limiting factors. Findings reveal an average yield ranging from 16.7 to 19.3 t ha-1, with a potential highest yield of 37.5 t ha-1. Fertilizer nitrogen (N) was identified as the most pervasive yield-limiting factor, constituting 62.7% of the average limitation at the regional level and 37.7% at the individual smallholder level, surpassing other yield-related factors in all three regions. Subsequently, a 2-year field optimization experiment was conducted to explore the potential for yield improvement through adjustments in N fertilizer rates. Compared with traditional farmer management (FM), the N fertilizer optimization treatment (OPT) resulted in a 38.1% and 22.5% increase in yield for 2022 and 2023, respectively. CONCLUSION: These results identify N fertilizer application rate as the most important yield-limiting factor and verify the feasibility of optimizing N fertilizer management practices for improving pear yield. This study integrates farmer surveys, boundary line models, and field experiments to provide valuable insights into addressing yield disparities among smallholders in the pear industry. © 2024 Society of Chemical Industry.
RESUMO
Multispecific therapeutics hold significant promise in drug delivery, protein degradation, and cell recruitment to address clinical issues of tumor heterogeneity, resistance, and immune evasion. However, their modular engineering remains challenging. We developed a targeted degradation platform, termed multivalent nanobody-targeting chimeras (mNbTACs), by encoding diverse nanobody codons on a circular template using DNA printing technology. The homo- or hetero- mNbTACs specifically recognized membrane targets in a multivalent manner and simultaneously recruited scavenger receptors to favor clathrin-/caveolae-dependent endocytosis and lysosomal degradation of multiple proteins with high efficiency and selectivity. We demonstrated that a bispecific doxorubicin-loaded mNbTAC, named Doxo-mvNbsPPH, passively accumulated at tumor sites, specifically interacted with PD-L1 and HER2 targets, and was rapidly transported into lysosome, inducing potent immunogenic cell death and alleviating immune checkpoint evasion. The synergistic boosting of innate and adaptive immunity promoted the infiltration and proliferation of CD8+ T cells in tumor microenvironment (an 11-fold increase) with high toxicity and low exhaustion, eventually enhancing antitumor efficacy. Our mNbTAC platform provides multispecific therapeutics with variable valences and programmed species, whereas it induces targeted protein degradation through multireceptor-mediated endocytosis and lysosomal degradation without the need for lysosome-targeting receptors, representing a general and modular tool to harness extracellular proteome for disease treatment.
RESUMO
Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2-/- mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.
Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Humanos , Animais , Camundongos , Macrófagos Peritoneais/patologia , Macrófagos/metabolismo , Fígado/metabolismo , Esquistossomose/metabolismo , Esquistossomose/patologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismoRESUMO
Proteolysis Targeting Chimeras (PROTACs) represent a promising therapeutic modality to address undruggable and resistant issues in drug discovery. However, potential on-target toxicity remains clinically challenging. We developed a generalized caging strategy to synthesize a series of stimuli-responsive PROTACs (sr-PROTACs) with diverse molecular blocks bearing robust and cleavable linkers, presenting "turn on" features in manipulating protein degradation. By leveraging pathological cues, such as elevated ROS, phosphatase, H2 S, or hypoxia, and external triggers, such as ultraviolet light, X-Ray, or bioorthogonal reagents, we achieved site-specific activation and traceless release of original PROTACs through de-caging and subsequent self-immolative cleavage, realizing selective uptake and controlled protein degradation in vitro. An in vivo study revealed that two sr-PROTACs with phosphate- and fluorine-containing cages exhibited high solubility and long plasma exposure, which were specifically activated by tumor overexpressing phosphatase or low dosage of X-Ray irradiation in situ, leading to efficient protein degradation and potent tumor remission. With more reactive biomarkers to be screened from clinical practice, our caging library could provide a general tool to design activatable PROTACs, prodrugs, antibody-drug conjugates, and smart biomaterials for personalized treatment, tissue engineering or regenerative medicine.
Assuntos
Neoplasias , Humanos , Proteólise , Neoplasias/tratamento farmacológico , Descoberta de Drogas , Ubiquitina-Proteína Ligases/metabolismoRESUMO
BACKGROUND: Cryptorchidism is the most common congenital defect in children's genitourinary system. Decades of research have identified both environmental and genetic factors contribute to the etiology. METHODS: Small-RNA/mRNA-seq were performed on testicular tissues from cryptorchidism patients. Downstream analysis included mRNA expression, piRNA expression and miRNA expression. RESULTS: We find a global downregulation of repeated element related piRNA expression as well as a global 3'UTR shortening of mRNAs in patients with cryptorchidism. We also find that genes with shortened 3'UTR which are highly enriched in vascular endothelial growth and protein ubiquitination, tend to be up-regulated in cryptorchidism. These results indicate that boys with cryptorchidism may not have normal piRNA functions to protect developmental tissues from transposon invasion. Dysregulated shortened 3'UTR genes may affect normal testicular tissue development. CONCLUSION: In summary, our findings also provided the first landscape of gene regulation in cryptorchidism, especially in terms of post-transcriptional regulations.
Assuntos
Criptorquidismo/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Pré-Escolar , Endotélio Vascular/metabolismo , Humanos , Lactente , Masculino , Testículo/metabolismoRESUMO
This study was designed to clarify whether the irradiation of carotid baroreceptor (CB) with low-intensity pulsed ultrasound (LIPUS) protects against obesity by rebalancing the autonomic nervous system (ANS). Obesity was induced using a high-fat diet (HFD) for 8 weeks in Sprague-Dawley rats. Irradiation with LIPUS was daily (20 minutes a day) applied to the right CB. In our study, LIPUS significantly ameliorated metabolic disorders in obese rats. LIPUS partly restored norepinephrine (NE) and acetylcholine (ACH) levels in the perirenal white adipose tissue (PWAT), epididymal white adipose tissue (EWAT), interscapular brown adipose tissue (IBAT), and plasma of obese rats. LIPUS partially rectified the dysregulated AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor (PPAR) α/É£ pathway in the PWAT, EWAT, and IBAT of obese rats. PPARγ and PPARγ target genes respond more sensitively to HFD and LIPUS in PWAT and EWAT than in IBAT. NE, ACH, uncoupling protein-1, phosphorylated AMPK, PPARα, and PPARα target genes respond more sensitively to HFD and LIPUS in IBAT than in PWAT and EWAT. Conclusion: LIPUS irradiation of CB exerts different metabolic protection in PWAT, EWAT, and IBAT by rebalancing the ANS and rectifying the AMPK/PPARα/É£ pathway in obese rats.
Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Seio Carotídeo/metabolismo , Doenças Metabólicas/prevenção & controle , Obesidade/prevenção & controle , Pressorreceptores/metabolismo , Ondas Ultrassônicas , Tecido Adiposo Marrom/efeitos da radiação , Tecido Adiposo Branco/efeitos da radiação , Animais , Seio Carotídeo/efeitos da radiação , Dieta Hiperlipídica/efeitos adversos , Epididimo/metabolismo , Epididimo/efeitos da radiação , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Pressorreceptores/efeitos da radiação , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: To explore the predictive value of neutrophil-lymphocyte ratio (NLR) at presentation for delayed neurological sequelae (DNS) in carbon monoxide (CO) poisoning. METHODS: This single-center retrospective observational study included a total of 253 consecutive patients who visited the emergency department (ED) due to acute CO intoxication between 7 October 2015 and 31 December 2019. The included patients had a history of coma and their blood routine was measured within one hour of ED admission. They were divided into two groups according to the presence of DNS, including those who developed DNS (DNS group) and those who did not (non-DNS group). RESULTS: A total of 171 patients were included in this research, and 49 (28.7%) developed DNS. The median NLR at ED admission was obviously higher in the DNS group (10.60 [9.69-15.34]) than in the non-DNS group (7.53 [5.86-8.56]) (p < 0.001). Multivariate analysis indicated that a high NLR (adjusted odds ratio (AOR): 1.78, 95% confidence interval (CI): 1.46-2.18) and the occurrence of acute brain lesions (AOR: 7.50, 95%CI: 2.86-19.68) on diffusion-weighted imaging were independent predictors of DNS. The NLR was more than 8.97. The prediction of occurrence of DNS had a sensitivity of 93.88% and a specificity of 84.43%. Kappa value was 0.713. The predicted results showed good authenticity and consistency. CONCLUSION: The level of NLR at presentation had good predictive value for the development of DNS, showing the superior value for clinical application.
Assuntos
Intoxicação por Monóxido de Carbono/patologia , Doenças do Sistema Nervoso Central/induzido quimicamente , Contagem de Linfócitos , Linfócitos , Neutrófilos , Adulto , Idoso , Doenças do Sistema Nervoso Central/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos RetrospectivosRESUMO
Toxoplasma gondii excreted-secreted antigens (ESA) could result in adverse outcomes of pregnancy including abortion, stillbirth, foetal infection or teratogenesis in mice during early stage of pregnancy. Defective generation or function of regulatory T cells (Tregs) may account for those adverse pregnancy outcomes. Forkhead box p3 (Foxp3), which is the key transcriptional factor of Tregs, modulates its development and maintains inhibitory function. We previously demonstrated that ESA inhibited Foxp3 expression by attenuating transforming growth factor ß RII/Smad2/Smad3/Smad4 pathway. In this study, we propose to study the role of ESA on the activity of Foxp3 promoter and explore potential mechanisms. We demonstrated that ESA suppressed Foxp3 promoter activity using dual-luciferase reporter assay. ESA functioned at -443/-96 region of Foxp3 promoter to suppress its activity using truncated fragments of Foxp3 promoter. Further analysis revealed that suppressive role of ESA on Foxp3 promoter activity is related to specificity protein 1 (SP1). Transfection of expression plasmid of pcDNA3.1-SP1 could restore the down-regulation of Foxp3 induced by ESA. In conclusion, this study provides a new mechanism by which ESA could inhibit the Foxp3 promoter activity via SP1.
Assuntos
Antígenos de Protozoários/imunologia , Fatores de Transcrição Forkhead/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição Sp1/fisiologia , Toxoplasma/imunologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/biossíntese , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Genes Reporter , Camundongos , Proteínas Recombinantes/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
Abnormal expression of neuropilin and tolloid-like 1 (NETO1) has been detected in some human carcinomas. However, the expression of NETO1 and the underlying mechanism in epithelial ovarian cancer (EOC) remain unknown. In this study, we found that a higher NETO1 expression in EOC tissue samples compared to normal ovarian tissue samples was significantly correlated with worse overall survival. Additionally, Cox regression analysis suggested that NETO 1 was independently associated with overall survival. NETO1 overexpression enhanced the EOC cells' migration and invasion capability in vitro via regulation of actin cytoskeleton. Mechanistically, silencing NETO1 reduced the expression of ß-tubulin, F-actin and KIF2A. In conclusion, our results demonstrated the critical role of NETO1 in EOC invasion, and therapies aimed at inhibiting its expression or activity might significantly control EOC growth, invasion and metastatic dissemination.
Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Neuropilinas/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Cinesinas/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Tubulina (Proteína)/metabolismoRESUMO
Three-dimensional (3D) printing is widely used in medicine. Most research remains focused on forming rigid anatomical models, but moving from static models to dynamic functionality could greatly aid preoperative surgical planning. This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system. Such models allow simulation of surgical procedures under mock physiological conditions, and are; therefore, potentially very useful to clinical practice. For example, anatomical models of mitral regurgitation could provide a better display of lesion area, while dynamic 3D models could further simulate in vitro hemodynamics. Dynamic 3D models could also be used in setting standards for certain parameters for function evaluation, such as flow reserve fraction in coronary heart disease. As a bridge between medical image and clinical aid, 3D printing is now gradually changing the traditional pattern of diagnosis and treatment.
Assuntos
Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Modelos Anatômicos , Impressão Tridimensional , Doenças Cardiovasculares/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
YB1 is a negative regulator in liver fibrosis. We wondered whether SJYB1, a homologous protein of YB1 from Schistosoma japonicum, has an effect on liver fibrosis in vitro. Recombinant SJYB1 (rSJYB1) protein was expressed in a bacterial system and purified by Ni-NTA His·Bind Resin. A human hepatic stellate cell line, the LX-2 cell line, was cultured and treated with rSJYB1. The role of rSJYB1 on LX-2 cells was then analysed by Western blot and luciferase assay. We succeeded in expressing and purifying SJYB1 in a bacterial system and the purified rSJYB1 could be recognized by S japonicum-infected rabbit sera. Western bolt analysis showed that rSJYB1 inhibited the expression of collagen type I, but had little effect on α-smooth muscle actin (α-SMA). Further analysis revealed that rSJYB1 inhibited the activity of collagen α1 (I) (COL1A1) promoter and functioned at -1592/-1176 region of COL1A1 promoter. Our data demonstrate that rSJYB1-mediated anti-fibrotic activity involves inhibiting the activity of COL1A1 promoter and subsequently suppressing the expression of collagen type I in hepatic stellate cells.
Assuntos
Colágeno Tipo I/genética , Proteínas de Helminto/genética , Células Estreladas do Fígado/metabolismo , Regiões Promotoras Genéticas/genética , Proteína 1 de Ligação a Y-Box/genética , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Coelhos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismoRESUMO
Toxoplasma gondii excreted-secreted antigens (ESA) cause spontaneous abortion or fetal teratogenesis during the pregnancy in mice, especially in the early stage. Those adverse pregnancy outcomes are due to the deficit in regulatory T cells (Tregs). Forkhead box P3 (Foxp3), a critical transcription factor, modulates Tregs differentiation and its function. Besides, phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin (PI3K-AKT-mTOR) signaling network is implicated in interfering with Foxp3 induction. We previously demonstrated that ESA diminished the number of Tregs and inhibited its function. And ESA suppressed Foxp3 expression via the attenuation of transforming growth factor ß RII/Smad2/Smad3/Smad4 pathway. The current study aimed to investigate whether the PI3K-AKT-mTOR signaling network is involved in Foxp3 downregulation induced by ESA. We found that ESA upregulated PI3K, P-AKT, mTOR, and P-mTOR. Knockdown of PI3K cooperated with ESA to restore Foxp3 expression mediated by ESA. This suppressive role of ESA on Foxp3 expression was abrogated by AKT inhibitor. In addition, neutralization of Toll-like receptor 4 could restore the expression of Foxp3, PI3K, and its downstream effectors induced by ESA. Collectively, the findings indicated that ESA inhibited Foxp3 expression via the upregulation of PI3K-AKT-mTOR signaling pathway.
Assuntos
Antígenos de Protozoários/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Toxoplasma/imunologia , Animais , Linhagem Celular , Regulação para Baixo , Feminino , Camundongos , Fosforilação , Gravidez , Transdução de SinaisRESUMO
miR-27b is reported to participate in the proliferation and differentiation of hepatic stellate cells (HSCs) and to regulate fat metabolism of rat HSCs by targeting retinoid X receptor α. Our previous study also indicated that the recombinant P40 protein from Schistosoma japonicum (rSjP40) inhibited the activation of HSCs. In this study, we observed the expression of miR-27b in rSjP40-treated LX-2 cells and explored its potential mechanisms. Quantitative real-time PCR showed that rSjP40 inhibits the expression of miR-27b in LX-2 cells. Further results obtained by Western blot and dual-luciferase reporter assay confirmed that miR-27b regulates peroxisome proliferator-activated receptor γ (PPARγ) expression in rSjP40-treated LX-2 cells by targeting the 3'-UTR of PPARγ. 5-AZA-2'-deoxycytidine (5-AZA-dC), which inhibits methylation of HSCs, partially reversed rSjP40-induced down-regulation expression of miR-27b in LX-2 cells. 5-AZA-dC also partially reversed rSjP40-induced up-regulation expression of PPARγ in LX-2 cells. The increased expression of PPARγ in rSjP40-treated LX-2 cells may be partially due to miR-27b methylation. Therefore, our study provides further insight into the mechanism by which rSjP40 inhibits HSC activation and provides a basis for future study of the blocking effect of rSjP40 in liver fibrosis.-Zhu, D., Lyu, L., Shen, P., Wang, J., Chen, J., Sun, X., Chen, L., Zhang, L., Zhou, Q., Duan, Y. rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b.
Assuntos
Diferenciação Celular/fisiologia , Cirrose Hepática/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Humanos , Proteínas Recombinantes/metabolismo , Schistosoma japonicum/genética , Regulação para CimaRESUMO
Hepatic fibrosis is characterized by the activation of the main collagen-producing cells of the liver, hepatic stellate cells, and is associated with inflammation. Although the involvement of numerous inflammatory cytokines has been reported, IL-34 in particular has recently been identified as a profibrotic factor in the development of hepatic fibrosis. Previous studies have found that schistosome eggs can lead to transcriptional downregulation of fibrosis-associated genes, and based on this evidence, we attempted to investigate whether or not IL-34 is regulated by soluble egg antigen (SEA). Our findings testified that SEA inhibited TNF-α-induced expression of IL-34 at both the mRNA and protein levels. Furthermore, results from reporter assays and qPCR experiments demonstrated that SEA impaired the activation of NF-κB triggered by TNF-α, as well as the transcription of downstream genes. More importantly, SEA decreased the phosphorylation and degradation of IκBα induced by TNF-α, two events that are hallmarks of canonical NF-κB activation. In conclusion, our results suggest that, in hepatic stellate cells, SEA impairs NF-κB activation and thereby inhibits TNF-α-induced IL-34 expression. These findings reveal a previously unidentified target and signaling pathway that support SEA's involvement in hepatic fibrosis and provide a new clue to guide ongoing research into the anti-fibrotic effects of SEA.
Assuntos
Antígenos de Helmintos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/imunologia , Interleucinas/genética , Schistosoma japonicum/química , Animais , Linhagem Celular , Citocinas/metabolismo , Fibrose , Regulação da Expressão Gênica/imunologia , Inflamação/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Schistosoma japonicum/imunologia , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cancer is one of the foremost causes of death globally and also the major stumbling block of increasing life expectancy. Although the primary treatment of surgical resection, chemotherapy, and radiotherapy have greatly reduced the mortality of cancer, the survival rate is still low because of the metastasis of tumor, a range of adverse drug reactions, and drug resistance. For all this, it is relevant to mention that a growing amount of research has shown the anticarcinogenic effect of phytochemicals which can modulate the molecular pathways and cellular events include apoptosis, cell proliferation, migration, and invasion. However, their pharmacological potential is hindered by their low water solubility, low stability, poor absorption, and rapid metabolism. In this scenario, the development of nanotechnology has created novel formulations to maximize the potential use of phytochemicals in anticancer treatment. Nanocarriers can enhance the solubility and stability of phytochemicals, prolong their half-life in blood and even achieve site-targeting delivery. This review summarizes the advances in utilizing nanoparticles in cancer therapy. In particular, we introduce several applications of nanoparticles combined with apigenin, resveratrol, curcumin, epigallocatechin-3-gallate, 6-gingerol, and quercetin in cancer treatment.