Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23587, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568835

RESUMO

Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.


Assuntos
Mastite , Infecções Estafilocócicas , Feminino , Humanos , Ratos , Animais , Staphylococcus aureus/fisiologia , Proteômica , Ácido Araquidônico/metabolismo , Mastite/microbiologia , Mastite/patologia , Mastite/veterinária , Inflamação/metabolismo , Redes e Vias Metabólicas , Glândulas Mamárias Animais/metabolismo , Infecções Estafilocócicas/metabolismo
2.
Neuroimage ; 297: 120710, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942100

RESUMO

Working memory (WM) supports future behavior by retaining perceptual information obtained in the recent past. The present study tested the hypothesis that WM recodes sensory information in a format that better supports behavioral goals. We recorded EEG while participants performed color delayed-estimation tasks where the colorwheel for the response was either randomly rotated or held fixed across trials. Accordingly, observers had to remember the exact colors in the Rotation condition, whereas they could prepare for a response based on the fixed mapping between the colors and their corresponding locations on the colorwheel in the No-Rotation condition. Results showed that the color reports were faster and more precise in the No-Rotation condition even when exactly the same set of colors were tested in both conditions. To investigate how the color information was maintained in the brain, we decoded the color using a multivariate EEG classification method. The decoding was limited to the stimulus encoding period in the Rotation condition, whereas it continued to be significant during the maintenance period in the No-Rotation condition, indicating that the color information was actively maintained in the condition. Follow-up analyses suggested that the prolonged decoding was not merely driven by the covert shift of attention but rather by the recoding of sensory information into an action-oriented response format. Together, these results provide converging evidence that WM flexibly recodes sensory information depending on the specific task context to optimize subsequent behavioral performance.

3.
Bioconjug Chem ; 35(1): 107-114, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38108270

RESUMO

We herein described the design and synthesis of the cyanopyridoimidazoles (CPIs) as new bioorthogonal click reagents toward 1,2-aminothiol groups. Kinetic and density functional theory-based studies of the synthetic compounds revealed that incorporating an electron-withdrawing substituent into the CPI scaffold lowers its lowest unoccupied molecular orbital energy, consequently increasing reactivity. Optimized CPI 8a showed rapid reactivity and high stability in physiological conditions and has been demonstrated to be suitable for various radiotracer synthetic methods. Based on the new bioorthogonal reaction, a [67Ga]Ga-labeled prostate-specific membrane antigen-targeted probe was successfully prepared for in vivo imaging of prostate cancer in an animal model.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Animais , Compostos Radiofarmacêuticos , Química Click , Reação de Cicloadição
4.
Langmuir ; 40(9): 4914-4926, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385347

RESUMO

Electrochemical scanning tunneling microscopy (EC-STM) and electrochemical quartz crystal microbalance (E-QCM) techniques in combination with DFT calculations have been applied to reveal the static phase and the phase transition of copper underpotential deposition (UPD) on a gold electrode surface. EC-STM demonstrated, for the first time, the direct visualization of the disintegration of (√3 × âˆš3)R30° copper UPD adlayer with coadsorbed SO42- while changing sample potential (ES) toward the redox Pa2/Pc2 peaks, which are associated with the phase transition between the Cu UPD (√3 × âˆš3)R30° phase II and disordered randomly adsorbed phase III. DFT calculations show that SO42- binds via three oxygens to the bridge sites of the copper with sulfate being located directly above the copper vacancy in the (√3 × âˆš3)R30° adlayer, whereas the remaining oxygen of the sulfate points away from the surface. E-QCM measurement of the change of the electric charge due to Cu UPD Faradaic processes, the change of the interfacial mass due to the adsorption and desorption of Cu(II) and SO42-, and the formation and stripping of UPD copper on the gold surface provide complementary information that validates the EC-STM and DFT results. This work demonstrated the advantage of using complementary in situ experimental techniques (E-QCM and EC-STM) combined with simulations to obtain an accurate and complete picture of the dynamic interfacial adsorption and UPD processes at the electrode/electrolyte interface.

5.
Metab Brain Dis ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771413

RESUMO

Meningioma is a prevalent intracranial malignancy known for its aggressive growth. Circular RNAs (circRNAs) play a crucial role in the development of various cancers. However, their involvement in meningioma remains understudied. This study aimed to investigate the function and underlying mechanism of hsa_circ_0004872 in meningioma. The molecular expression of hsa_circ_0004872, PD-L1 and EIF4A3 was identified by RT-qPCR and/or western blot assays. Cell viability, migration, and invasion were assessed through CCK-8 and Transwell assays, respectively. Cytotoxicity was determined using an LDH assay, and cell apoptosis was monitored by flow cytometry. The RNA and protein interactions were assessed through RNA-protein immunoprecipitation (RIP) and RNA pull down analyses. Our findings revealed that hsa_circ_0004872 expression was significantly downregulated in both meningioma tissue samples and cells. Overexpression of hsa_circ_0004872 inhibited the proliferation, metastasis, and immune escape of meningioma cells, as well as enhanced the cytotoxicity of CD8+ T cells by suppressing PD-L1. Furthermore, hsa_circ_0004872 directly interacted with EIF4A3, leading to the degradation of PD-L1 mRNA. Finally, inhibiting EIF4A3 improved the proliferation, metastasis, and immune escape of meningioma cells, as well as the cytotoxicity of CD8+ T cells. Our study demonstrated that hsa_circ_0004872 mitigated the proliferation, metastasis,and immune escape of meningioma cells by targeting the EIF4A3/PD-L1 axis. These findings suggested that hsa_circ_0004872 and EIF4A3 might serve as promising biological markers and therapeutic targets for meningioma treatment.

6.
Eur Spine J ; 33(2): 429-437, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37773448

RESUMO

PURPOSE: Advancement in all surgery continues to progress towards more minimally invasive surgical (MIS) approaches. One of the platform technologies which has helped drive this trend within spine surgery is the development of endoscopy; however, the limited anatomic view experienced when performing endoscopic spine surgery requires a significant learning curve. The use of intraoperative navigation has been adapted for endoscopic spine surgery, as this provides computer-reconstructed visual data presented in three dimensions, which can increase feasibility of this technique to more surgeons. METHODS: This paper will describe the principles, technical considerations, and applications of stereotactic navigation-guided endoscopic spine surgery. RESULTS: Full-endoscopic spine surgery has advanced in recent years such that it can be utilized in both decompressive and fusion surgeries. One of the major pitfalls to any minimally invasive surgery (including endoscopic) is that the limited surgical view can often complicate the surgery or confuse the surgeon, leading to longer operative times, higher risks, among others. This is the real utility to using navigation in conjunction with the endoscope-when registered correctly and utilized appropriately, navigated endoscopic spine surgery can take some of the guesswork out of the minimally invasive approach. CONCLUSIONS: Using navigation with endoscopy in spine surgery can potentially expand this technique to surgeons who have yet to master endoscopy as the assistance provided by the navigation can alleviate some of the complexities with anatomic understanding and surgical planning.


Assuntos
Endoscopia , Imageamento Tridimensional , Humanos , Curva de Aprendizado , Duração da Cirurgia , Coluna Vertebral/cirurgia
7.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260390

RESUMO

The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein's theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory-experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments.


Assuntos
DNA/química , Entropia , Hidrogéis/química , Corantes/química , Eletricidade , Substâncias Macromoleculares/química , Polietilenoglicóis/química
8.
J Formos Med Assoc ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38438298

RESUMO

PURPOSE: Carotid artery web (CaW) is a rare focal fibromuscular dysplasia that can lead to embolic strokes with large vessel occlusion. This condition can be effectively treated with endovascular thrombectomy (EVT). Our study aims to assess the prevalence of CaW among patients with acute ischemic stroke (AIS) who underwent EVT and to compare the clinical characteristics of CaW with other carotid artery pathologies. METHODS: We enrolled consecutive patients with AIS who underwent EVT at a single medical center and two regional teaching hospitals in Taiwan from September 2014 to December 2021. We compared CaW with carotid dissection (CaD) and carotid large artery atherosclerosis (CaLAA) in terms of patient demographics and thrombus histological findings. RESULTS: Of the 576 AIS patients who underwent EVT, four (mean age: 50 years) were diagnosed with CaW, resulting in a prevalence of 0.69%. Among these four patients, three experienced successful reperfusion after EVT and achieved functional independence (defined as a modified Rankin Scale score ≤2) three months post-stroke. Importantly, none of the CaW patients suffered a recurrent stroke within one year. Patients with CaW were younger than those with CaD or CaLAA, and exhibited fewer vascular risk factors. Additionally, CaW was associated with distal occlusion sites. The thrombus composition in CaW patients was similar to that in CaD patients. CONCLUSIONS: In conclusion, CaW is a rare finding among Asian patients with carotid artery disease who undergo for AIS. It is more prevalent in younger patients with a limited number of vascular risk factors.

9.
Nano Lett ; 23(10): 4359-4366, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155142

RESUMO

Surface plasmons have robust and strong confinement to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.

10.
Nano Lett ; 23(24): 11727-11733, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38014963

RESUMO

We demonstrated optical bistability in an amorphous silicon Mie resonator with a size of ∼100 nm and Q-factor as low as ∼4 by utilizing photothermal and thermo-optical effects. We not only experimentally confirmed the steep intensity transition and the hysteresis in the scattering response from silicon nanocuboids but also established a physical model to numerically explain the underlying mechanism based on temperature-dependent competition between photothermal heating and heat dissipation. The transition between the bistable states offered particularly steep superlinearity of scattering intensity, reaching an effective nonlinearity order of ∼100th power over excitation intensity, leading to the potential of advanced optical switching devices and super-resolution microscopy.

11.
Telemed J E Health ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739447

RESUMO

Introduction: The purpose of this study was to assess the impact of telemedicine on ophthalmic screening and blood glucose control for patients with diabetes in remote areas of Northern Taiwan during the coronavirus disease 2019 (COVID-19) pandemic. Methods: Telemedicine was implemented in Shiding and Wanli Districts using a 5G platform from April 2021 to December 2022. Patients with poorly controlled diabetes received real-time consultations from endocrinologists at Far Eastern Memorial Hospital, 50 km away, for medication adjustment, diet control, and lifestyle recommendations. The study also provided cloud-upload blood glucose meters for self-monitoring and regular medical advice from hospital nurses. Ophthalmic screenings included fundus imaging, external eye image, and intraocular pressure measurement, with instant communication and diagnosis by ophthalmologists through telemedicine. A satisfaction questionnaire survey was conducted. Results: The study enrolled 196 patients with diabetes. Blood glucose and glycosylated hemoglobin levels were significantly reduced after applying telemedicine (p = 0.01 and p = 0.005, respectively). Ophthalmic screenings led to hospital referrals for 16.0% with abnormal fundus images, 15.6% with severe cataract or anterior segment disorders, and 27.9% with ocular hypertension or glaucoma. Fundus screening rates remained high at 86.3% and 80.4% in 2022, mainly using telemedicine, comparable with the traditional screening rate in the past 5 years. The overall satisfaction rate was 98.5%. Conclusions: Telemedicine showed effectiveness and high satisfaction in managing diabetes and conducting ophthalmic screenings in remote areas during the COVID-19 pandemic. It facilitated early diagnosis and treatment of ocular conditions while maintaining good blood glucose control and fundus screening rates.

12.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674114

RESUMO

Preeclampsia, a serious complication of pregnancy, involves intricate molecular and cellular mechanisms. Fetal microchimerism, where fetal cells persist within maternal tissues and in circulation, acts as a mechanistic link between placental dysfunction and maternal complications in the two-stage model of preeclampsia. Hormones, complements, and cytokines play pivotal roles in the pathophysiology, influencing immune responses, arterial remodeling, and endothelial function. Also, soluble HLA-G, involved in maternal-fetal immune tolerance, is reduced in preeclampsia. Hypoxia-inducible factor 1-alpha (Hif-α) dysregulation leads to placental abnormalities and preeclampsia-like symptoms. Alterations in matrix metalloproteinases (MMPs), endothelins (ETs), chemokines, and cytokines contribute to defective trophoblast invasion, endothelial dysfunction, and inflammation. Preeclampsia's genetic complexity includes circRNAs, miRNAs, and lncRNAs. CircRNA_06354 is linked to early-onset preeclampsia by influencing trophoblast invasion via the hsa-miR-92a-3p/VEGF-A pathway. The dysregulation of C19MC, especially miR-519d and miR-517-5p, affects trophoblast function. Additionally, lncRNAs like IGFBP1 and EGFR-AS1, along with protein-coding genes, impact trophoblast regulation and angiogenesis, influencing both preeclampsia and fetal growth. Besides aberrations in CD31+ cells, other potential biomarkers such as MMPs, soluble HLA-G, and hCG hold promise for predicting preeclampsia and its complications. Therapeutic interventions targeting factors such as peroxisome PPAR-γ and endothelin receptors show potential in mitigating preeclampsia-related complications. In conclusion, preeclampsia is a complex disorder with a multifactorial etiology and pathogenesis. Fetal microchimerism, hormones, complements, and cytokines contribute to placental and endothelial dysfunction with inflammation. Identifying novel biomarkers and therapeutic targets offers promise for early diagnosis and effective management, ultimately reducing maternal and fetal morbidity and mortality. However, further research is warranted to translate these findings into clinical practice and enhance outcomes for at-risk women.


Assuntos
Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Biomarcadores , Hormônios/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Trofoblastos/metabolismo
13.
J Sci Food Agric ; 104(6): 3437-3447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111200

RESUMO

BACKGROUND: Obesity induces insulin resistance and chronic inflammation, impacting human health. The relationship between obesity, gut microbiota, and regulatory mechanisms has been studied extensively. Dendrobium officinale polysaccharide (DOP), a traditional Chinese herbal medicine, potentially reduces insulin resistance. However, the mechanism through which DOP affects gut microbiota and alleviates obesity-induced insulin resistance in rats requires further investigation. RESULTS: The current study aimed to assess the impact of DOP on gut microbiota and insulin resistance in rats on a high-fat diet. The results revealed that DOP effectively reduced blood lipids, glucose disorders, oxidative stress, and inflammatory infiltration in the liver of obese Sprague Dawley rats. This was achieved by downregulating SOCS3 expression and upregulating insulin receptor substrate-1 (IRS-1) by regulating the JAK/STAT/SOCS3 signaling pathway. Notably, DOP intervention enhanced the abundance of beneficial gut microbiota and reduced harmful microbiota. Correlation analysis demonstrated significant associations among intestinal microbiota, SOCS3-mediated IRS-1 expression, and inflammatory factors. CONCLUSION: Dendrobium officinale polysaccharide regulated the gut microbiota, enhanced IRS-1 expression, and mitigated liver injury and insulin resistance due to a high-fat diet. These findings depict the potential anti-insulin resistance properties of DOP and offer further evidence for addressing obesity and its complications. © 2023 Society of Chemical Industry.


Assuntos
Dendrobium , Microbioma Gastrointestinal , Resistência à Insulina , Ratos , Humanos , Animais , Dendrobium/química , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Ratos Sprague-Dawley , Polissacarídeos/química , Transdução de Sinais , Obesidade/tratamento farmacológico , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
14.
Semin Cancer Biol ; 83: 556-569, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33035656

RESUMO

Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Epigênese Genética , Feminino , Humanos , Mutação , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
15.
Br J Cancer ; 128(1): 102-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319846

RESUMO

BACKGROUND: Prognosis of metastatic BRAF V600E mutant colorectal cancer (CRC) is poor, and the prognostic implications of immune contextures in the tumour microenvironment (TME) for CRC remain elusive. METHODS: We collected the primary tumour specimens and clinicopathological characteristics of patients with de novo metastatic microsatellite-stable BRAF V600E mutant CRC from two medical centres. Gene expression analysis was performed using the nCounterⓇ PanCancer Immune Profiling Panel. The Cox proportional hazards regression model was used for analysing survival outcomes in association with immune gene expression and immune cells. Our complement score was defined on the basis of the average gene expression in the selected co-expression module. RESULTS: High expression of classical and regulatory complement genes was significantly associated with poor prognosis (N = 54). A high complement score (defined as a score above the median value) indicated significantly shorter survival. The overall survival (OS) impact of the high score remained significant in multivariate analyses. Additionally, our complement score was strongly correlated with C4d expression in immunohistochemical staining and tumour-associated macrophage (TAM) M2 signatures. CONCLUSIONS: Complement activation in the TME was significantly associated with poor OS and was correlated with TAM M2 in patients with de novo metastatic BRAF V600E mutant CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microambiente Tumoral/genética , Neoplasias Colorretais/patologia , Ativação do Complemento/genética , Mutação
16.
Ann Surg ; 277(4): e839-e848, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35837974

RESUMO

OBJECTIVE: To establish global benchmark outcomes indicators after laparoscopic liver resections (L-LR). BACKGROUND: There is limited published data to date on the best achievable outcomes after L-LR. METHODS: This is a post hoc analysis of a multicenter database of 11,983 patients undergoing L-LR in 45 international centers in 4 continents between 2015 and 2020. Three specific procedures: left lateral sectionectomy (LLS), left hepatectomy (LH), and right hepatectomy (RH) were selected to represent the 3 difficulty levels of L-LR. Fifteen outcome indicators were selected to establish benchmark cutoffs. RESULTS: There were 3519 L-LR (LLS, LH, RH) of which 1258 L-LR (40.6%) cases performed in 34 benchmark expert centers qualified as low-risk benchmark cases. These included 659 LLS (52.4%), 306 LH (24.3%), and 293 RH (23.3%). The benchmark outcomes established for operation time, open conversion rate, blood loss ≥500 mL, blood transfusion rate, postoperative morbidity, major morbidity, and 90-day mortality after LLS, LH, and RH were 209.5, 302, and 426 minutes; 2.1%, 13.4%, and 13.0%; 3.2%, 20%, and 47.1%; 0%, 7.1%, and 10.5%; 11.1%, 20%, and 50%; 0%, 7.1%, and 20%; and 0%, 0%, and 0%, respectively. CONCLUSIONS: This study established the first global benchmark outcomes for L-LR in a large-scale international patient cohort. It provides an up-to-date reference regarding the "best achievable" results for L-LR for which centers adopting L-LR can use as a comparison to enable an objective assessment of performance gaps and learning curves.


Assuntos
Laparoscopia , Neoplasias Hepáticas , Humanos , Hepatectomia/métodos , Benchmarking , Resultado do Tratamento , Complicações Pós-Operatórias , Tempo de Internação , Laparoscopia/métodos , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Estudos Retrospectivos
17.
Eur Spine J ; 32(8): 2647-2661, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36973463

RESUMO

OBJECTIVE: The study aims to assess the current development status of transforaminal full-endoscopic spine surgery (TFES) by exploring and analyzing the published literature to obtain an overview of this field and discover the evolution and emerging topics that are underrepresented. METHODS: Using Bibliometrix, CiteSpace, and VOSviewer, we analyzed the bibliometric data selected from the Web of Science Core Collection between January 2002 and November 2022. The descriptive and evaluative analyses of authors, institutes, countries, journals, keywords, and references are compiled. The quantity of research productivity was measured by the number of publications that were published. A quality indicator was thought to be the number of citations. In the bibliometric analysis of authors, areas, institutes, and references, we calculated and ranked the research impact by various metrics, such as the h-index and m-index. RESULTS: A total of 628 articles were identified in the field of TFES by the 18.73% annual growth rate of research on the subject from 2002 to 2022, constituting the documents are by 1961 authors affiliated with 661 institutions in 42 countries or regions and published in 117 journals. The USA (n = 0.20) has the highest international collaboration rate, South Korea has the highest H-index value (h = 33), and China is ranked as the most productive country (n = 348). Brown univ., Tongji univ., and Wooridul Spine represented the most productive institutes ranked by the number of publications. Wooridul Spine Hospital demonstrated the highest quality of paper publication. The Pain Physician had the highest h-index (n = 18), and the most cited journal with the earliest publication year in the area of FEDS is Spine (t = 1855). CONCLUSION: The bibliometric study showed a growing trend of research on transforaminal full-endoscopic spine surgery over the past 20 years. It has shown a significant increase in the number of authors, institutions, and international collaborating countries. South Korea, the United States, and China dominate the related areas. A growing body of evidence has revealed that TFES has leapfrogged from its infancy stage and gradually entered a mature development stage.


Assuntos
Bibliometria , Endoscopia , Humanos , China , República da Coreia , Coluna Vertebral/cirurgia
18.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982891

RESUMO

Osteoporosis resulting from an imbalance of bone turnover between resorption and formation is a critical health issue worldwide. Estrogen deficiency following a nature aging process is the leading cause of hormone-related osteoporosis for postmenopausal women, while glucocorticoid-induced osteoporosis remains the most common in drug-induced osteoporosis. Other medications and medical conditions related to secondary osteoporosis include proton pump inhibitors, hypogonadism, selective serotonin receptor inhibitors, chemotherapies, and medroxyprogesterone acetate. This review is a summary of the cellular and molecular mechanisms of bone turnover, the pathophysiology of osteoporosis, and their treatment. Nuclear factor-κß ligand (RANKL) appears to be the critical uncoupling factor that enhances osteoclastogenesis. In contrast, osteoprotegerin (OPG) is a RANKL antagonist secreted by osteoblast lineage cells. Estrogen promotes apoptosis of osteoclasts and inhibits osteoclastogenesis by stimulating the production of OPG and reducing osteoclast differentiation after suppression of IL-1 and TNF, and subsequent M-CSF, RANKL, and IL-6 release. It can also activate the Wnt signaling pathway to increase osteogenesis, and upregulate BMP signaling to promote mesenchymal stem cell differentiation from pre-osteoblasts to osteoblasts rather than adipocytes. Estrogen deficiency leads to the uncoupling of bone resorption and formation; therefore, resulting in greater bone loss. Excessive glucocorticoids increase PPAR-2 production, upregulate the expression of Dickkopf-1 (DKK1) in osteoblasts, and inhibit the Wnt signaling pathway, thus decreasing osteoblast differentiation. They promote osteoclast survival by enhancing RANKL expression and inhibiting OPG expression. Appropriate estrogen supplement and avoiding excessive glucocorticoid use are deemed the primary treatment for hormone-related and glucocorticoid-induced osteoporosis. Additionally, current pharmacological treatment includes bisphosphonates, teriparatide (PTH), and RANKL inhibitors (such as denosumab). However, many detailed cellular and molecular mechanisms underlying osteoporosis seem complicated and unexplored and warrant further investigation.


Assuntos
Glicoproteínas , Osteoporose , Humanos , Feminino , Glicoproteínas/metabolismo , Glucocorticoides/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Osteoblastos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/genética , Osteoporose/tratamento farmacológico , Diferenciação Celular , Estrogênios/metabolismo , Ligante RANK/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138961

RESUMO

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Assuntos
Quelantes , Neoplasias , Humanos , Camundongos , Animais , Quelantes/uso terapêutico , Radioisótopos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/uso terapêutico , Distribuição Tecidual , Antígeno B7-H1 , Desferroxamina/uso terapêutico , Neoplasias/tratamento farmacológico , Zircônio/farmacocinética , Linhagem Celular Tumoral
20.
Semin Cancer Biol ; 69: 190-199, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31446004

RESUMO

The use of nanoparticles dramatically increases the safety and efficacy of the most common anticancer drugs. The main advantages of nano-drugs and delivery systems based on nano-technology are effective targeting, delayed release, increased half-life, and less systemic toxicity. The use of nano-carriers has led to significant improvements in drug delivery to targets compared with traditional administration of these drugs. In this review, the main tendencies in nano-drug formulations as well as factors limiting their use in clinical settings are discussed. Additionally, the current status of approved nano-drugs for cancer treatment is reviewed.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas/química , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa