RESUMO
Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.
RESUMO
BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.
Assuntos
Células-Tronco Embrionárias , Células-Tronco Neurais , Animais , Camundongos , Estudos Prospectivos , Diferenciação Celular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Apoptose/genética , Proliferação de Células/genéticaRESUMO
Alzheimer's disease (AD) is the leading cause of dementia and presents a considerable disease burden. Its pathology involves substantial neuronal loss, primarily attributed to neuronal apoptosis. Although sirtuin 4 (SIRT4) has been implicated in regulating apoptosis in various diseases, the role of SIRT4 in AD pathology remains unclear. The study used APP/PS1 mice as an animal model of AD and amyloid-ß (Aß)1-42-treated HT-22 cells as an AD cell model. SIRT4 expression was determined by quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. A Sirt4 knockdown model was established by intracranial injection of lentivirus-packaged sh-SIRT4 and cellular lentivirus transfection. Immunohistochemistry and flow cytometry were used to examine Aß deposition in mice and apoptosis, respectively. Protein expression was assessed by Western blot analysis. The UCSC and JASPAR databases were used to predict upstream transcription factors of Sirt4. Subsequently, the binding of transcription factors to Sirt4 was analyzed using a dual-luciferase assay and chromatin immunoprecipitation. SIRT4 expression was upregulated in both APP/PS1 mice and Aß-treated HT-22 cells compared with their respective control groups. Sirt4 knockdown in animal and cellular models of AD resulted in reduced apoptosis, decreased Aß deposition, and amelioration of learning and memory impairments in mice. Mechanistically, SIRT4 modulates apoptosis via the mTOR pathway and is negatively regulated by the transcription factor signal transducer and activator of transcription 2 (STAT2). Our study findings suggest that targeting the STAT2-SIRT4-mTOR axis may offer a new treatment approach for AD.NEW & NOTEWORTHY The study reveals that in Alzheimer's disease models, SIRT4 expression increases, contributing to neuronal apoptosis and amyloid-ß deposition. Reducing SIRT4 lessens apoptosis and amyloid-ß accumulation, improving memory in mice. This process involves the mTOR pathway, regulated by STAT2 transcription factor. These findings suggest targeting the STAT2-SIRT4-mTOR axis as a potential Alzheimer's treatment strategy.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apoptose , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios , Fator de Transcrição STAT2 , Transdução de Sinais , Sirtuínas , Serina-Treonina Quinases TOR , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular , Proteínas MitocondriaisRESUMO
Catenanes have gained increasing attention for their unique features such as topological chirality. To date, the majority of works have focused on catenanes comprising monocyclic rings. Due to the lack of efficient synthetic strategy, catenanes of multiannulated monomers remain scarce. Here, we report the one-pot synthesis of an interwoven trimeric cage-catenane in high yield by dynamic imine condensation between diamine linkers of suitable length and trialdehyde panels in stoichiometry. The formation of cage-catenane is driven by the efficient 6-fold π-π stacking of panels. The monomeric cage and trimeric cage-catenane are interconvertible with reversible imine chemistry, with the latter thermodynamically being more favored. Using a topology-based statistical model, we first reveal that the formation probability of the interwoven catenane surpasses that of its chain-like isomer by 20%. When this pure mathematical model is refined by taking into account the strong template effect provided by the π-π stacking of aromatic panels, it shows that the interwoven structure emerges as the dominant species, almost ruling out the formation of the latter. Although composed of achiral cage monomers, the topological chirality of the interwoven trimeric catenane is unraveled by chiral-high-performance liquid chromatography (HPLC) and circular dichroism (CD) spectroscopy, and single-crystal X-ray diffraction (XRD) analysis of the interwoven cage-catenane also reveals a pair of two topological enantiomers. Our probability analysis-aided rationale would provide a design rationale for guiding the efficient synthesis of topologically sophisticated structures.
RESUMO
BACKGROUND: Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS: This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS: Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS: Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Prognóstico , Histona-Lisina N-MetiltransferaseRESUMO
BACKGROUND: Radioresistance is the leading cause of death in advanced cervical cancer (CC). Dysregulation of RNA modification has recently emerged as a regulatory mechanism in radiation and drug resistance. We aimed to explore the biological function and clinical significance of 5-methylcytosine (m5C) in cervical cancer radiosensitivity. METHODS: The abundance of RNA modification in radiotherapy-resistant and sensitive CC specimens was quantified by liquid chromatography-tandem mass spectrometry. The essential RNA modification-related genes involved in CC radiosensitivity were screened via RNA sequencing. The effect of NSUN6 on radiosensitivity was verified in CC cell lines, cell-derived xenograft (CDX), and 3D bioprinted patient-derived organoid (PDO). The mechanisms of NSUN6 in regulating CC radiosensitivity were investigated by integrative m5C sequencing, mRNA sequencing, and RNA immunoprecipitation. RESULTS: We found a higher abundance of m5C modification in resistant CC samples, and NSUN6 was the essential m5C-regulating gene concerning radiosensitivity. NSUN6 overexpression was clinically correlated with radioresistance and poor prognosis in cervical cancer. Functionally, higher NSUN6 expression was associated with radioresistance in the 3D PDO model of cervical cancer. Moreover, silencing NSUN6 increased CC radiosensitivity in vivo and in vitro. Mechanistically, NDRG1 was one of the downstream target genes of NSUN6 identified by integrated m5C-seq, mRNA-seq, and functional validation. NSUN6 promoted the m5C modification of NDRG1 mRNA, and the m5C reader ALYREF bound explicitly to the m5C-labeled NDRG1 mRNA and enhanced NDRG1 mRNA stability. NDRG1 overexpression promoted homologous recombination-mediated DNA repair, which in turn led to radioresistance in cervical cancer. CONCLUSIONS: Aberrant m5C hypermethylation and NSUN6 overexpression drive resistance to radiotherapy in cervical cancer. Elevated NSUN6 expression promotes radioresistance in cervical cancer by activating the NSUN6/ALYREF-m5C-NDRG1 pathway. The low expression of NSUN6 in cervical cancer indicates sensitivity to radiotherapy and a better prognosis.
Assuntos
5-Metilcitosina , Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , RNA Mensageiro , Tolerância a Radiação , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Tolerância a Radiação/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Metiltransferases/genética , Metiltransferases/metabolismoRESUMO
The invasion of Mikania micrantha by climbing and covering trees has rapidly caused the death of many shrubs and trees, seriously endangering forest biodiversity. In this study, M. micrantha seedlings were planted together with local tree species (Cryptocarya concinna) to simulate the process of M. micrantha climbing under the forest. We found that the upper part of the M. micrantha stem lost its support after climbing to the top of the tree, grew in a turning and creeping manner, and then grew branches rapidly to cover the tree canopy. Then, we simulated the branching process through turning treatment. We found that a large number of branches had been formed near the turning part of the M. micrantha stem (TP). Compared with the upper part of the main stem (UP), the contents of plant hormones (auxin, cytokinin, gibberellin), soluble sugars (sucrose, glucose, fructose) and trehalose-6-phosphate (T6P) were significantly accumulated at TP. Further combining the transcriptome data of different parts of the main stem under erect or turning treatment, a hypothetical regulation model to illustrate how M. micrantha can quickly cover trees was proposed based on the regulation of sugars and hormones on plant branching; that is, the lack of support after ascending the top of the tree led to turning growth of the main stem, and the enhancement of sugars and T6P levels in the TP may first drive the release of nearby dormant buds. Plant hormone accumulation may regulate the entrance of buds into sustained growth and maintain the elongation of branches together with sugars to successfully covering trees.
Assuntos
Espécies Introduzidas , Mikania , Árvores , Mikania/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Cancer metastasis poses significant challenges in current clinical therapy. Osthole (OST) has demonstrated efficacy in treating cervical cancer and inhibiting metastasis. Despite these positive results, its limited solubility, poor oral absorption, low bioavailability, and photosensitivity hinder its clinical application. To address this limitation, a glutathione (GSH)-responded nano-herb delivery system (HA/MOS@OST&L-Arg nanoparticles, HMOA NPs) is devised for the targeted delivery of OST with cascade-activatable nitric oxide (NO) release. The HMOA NPs system is engineered utilizing enhanced permeability and retention (EPR) effects and active targeting mediated by hyaluronic acid (HA) binding to glycoprotein CD44. The cargoes, including OST and L-Arginine (L-Arg), are released rapidly due to the degradation of GSH-responsive mesoporous organic silica (MOS). Then abundant reactive oxygen species (ROS) are produced from OST in the presence of high concentrations of NAD(P)H quinone oxidoreductase 1 (NQO1), resulting in the generation of NO and subsequently highly toxic peroxynitrite (ONOO-) by catalyzing guanidine groups of L-Arg. These ROS, NO, and ONOO- molecules have a direct impact on mitochondrial function by reducing mitochondrial membrane potential and inhibiting adenosine triphosphate (ATP) production, thereby promoting increased apoptosis and inhibiting metastasis. Overall, the results indicated that HMOA NPs has great potential as a promising alternative for the clinical treatment of cervical cancer.
RESUMO
PURPOSE: The characteristics of cytokine/chemokine(CK) profiles across different courses of chronic hepatitis B virus infection and the effects of NAs antiviral therapy on cytokine profiles remain unclear. METHODS: This report provides evidence from 383 patients with chronic HBV infection. The Luminex multiple cytokine detection technology was used to detect CK profiles. The predictive power of CKs across course of disease was assessedusing univariate analyses and with receiver operating characteristic (ROC) curves. RESULTS: Compared to healthy control (HC), expression levels of interleukin 6 (IL)-6, IL-8, IL-21, matrix metalloproteinases (MMP)-2 and tumor necrosis factor receptor (TNFR)-1 showed a significant increasing trend during chronic HBV infection. IL-23 and IL-33 increased respectively in chronic hepatitis B patients (CHB). interferon (IFN)-gamma and TNF-α changed significantly only in liver cirrhosis (LC) patients. Whereas, myeloid-related markers decreased dramatically in those with hepatocellular carcinoma (HCC). The ROC result suggests that combining IL-6, IL-8, CXCL9 and CXCL13 into a nomogram has closely correlation with HCC during chronic HBV infection. In addition, nucleotide analogues (NAs) antiviral treatments are capable of recoveringnormal liver functions and significantly reducing the viral loads, however, they seem to have a limited effect in changing CKs, especially specific antiviral factors. CONCLUSION: The differential CK and virological markers may serve as potential indicators of distinct immune statuses in chronic HBV infection. They also underscore the varying efficacy and limitations of NAs antiviral therapies. This next step would to break new ground in the optimization of current anti-HBV treatment programs although this requires further research.
Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Nucleotídeos , Interleucina-8 , Citocinas/metabolismo , Antivirais/uso terapêuticoRESUMO
Background: Revascularized patients still experience adverse cardiovascular events. This is particularly true for elderly patients over the age of 65, as they often have more co-morbid vascular conditions. It is important to develop a tool to assist clinicians in comprehensively assessing these patients' prognosis. The objective of this study is to create a comprehensive visual nomogram model combining clinical and physiological assessments to predict outcomes in elderly patients undergoing percutaneous coronary intervention (PCI). Methods: This study is a retrospective investigation of patients who underwent PCI between January 2016 and December 2017. A total of 691 patients with 1461 vessels were randomly divided into a training (n = 483) and a validation set (n = 208). A multivariate Cox regression model was employed using the training set to select variables for constructing a nomogram. The performance of the nomogram was assessed through the receiver operating characteristic curve (ROC) and calibration curves to evaluate its discrimination and predictive accuracy. To further assess the clinical usefulness, Kaplan-Meier curve analysis and landmark analysis were conducted. Results: Independent risk factors, including diabetes mellitus (DM), post-PCI quantitative flow ratio (QFR), previous myocardial infarction (MI), and previous PCI, were contained in the nomogram. The nomogram exhibited a good area under the curve (AUC) ranging from 0.742 to 0.789 in the training set, 0.783 to 0.837 in the validation set, and 0.764 to 0.786 in the entire population. Calibration curves demonstrated a well-fitted curve in all three sets. The Kaplan-Meier curves showed clear separation and the patients with higher scores in the nomogram model exhibited a higher incidence of target vessel revascularization (TVR) (7.99% vs. 1.24% for 2-year, p < 0.001 and 13.54% vs. 2.23% for 5-years, p < 0.001, respectively). Conclusions: This study has developed the visually intuitive nomogram to predict the 2-year and 5-year TVR rates for elderly patients who underwent PCI. This tool provides more accurate and comprehensive healthcare guidance for patients and their physicians.
RESUMO
BACKGROUND: Breast cancer is the most common cancer in women worldwide. Toxoplasma gondii (T. gondii) has shown anticancer activity in breast cancer mouse models, and exerted beneficial effect on the survival of breast cancer patients, but the mechanism was unclear. METHODS: The effect of tachyzoites of T. gondii (RH and ME49 strains) on human breast cancer cells (MCF-7 and MDA-MB-231 cells) proliferation and migration was assessed using cell growth curve and wound healing assays. Dual RNA-seq was performed for T. gondii-infected and non-infected cells to determine the differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction Networks analysis (PPI) were performed to explore the related signaling pathway and hub genes. Hub genes were validated using the Kaplan-Meier plotter database, and Pathogen Host Interaction (PHI-base) database. The results were verified by qRT-PCR. RESULTS: The tachyzoites of T. gondii decreased the expression of Ki67 and increased the expression of E-cadherin, resulting in suppressing the proliferation and migration of infected human breast cancer cells. The inhibitory effect of T. gondii on breast cancer cells showed a significant dose-response relationship. Compared with the control group, 2321 genes were transcriptionally regulated in MCF-7 cells infected with T. gondii, while 169 genes were transcriptionally regulated in infected MDA-MB-231 cells. Among these genes, 698 genes in infected MCF-7 cells and 67 genes in infected MDA-MB-231 cells were validated by the publicly available database. GO and KEGG analyses suggested that several pathways were involved in anticancer function of T. gondii, such as ribosome, interleukin-17 signaling, coronavirus disease pathway, and breast cancer pathway. BRCA1, MYC and IL-6 were identified as the top three hub genes in infected-breast cancer cells based on the connectivity of PPI analysis. In addition, after interacting with breast cancer cells, the expression of ROP16 and ROP18 in T. gondii increased, while the expression of crt, TgIST, GRA15, GRA24 and MIC13 decreased. CONCLUSIONS: T. gondii transcriptionally regulates several signaling pathways by altering the hub genes such as BRCA1, MYC and IL-6, which can inhibit the breast tumor growth and migration, hinting at a potential therapeutic strategy.
RESUMO
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
RESUMO
Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.
Assuntos
Antígenos de Diferenciação de Linfócitos T , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Glicólise , Coração , Macrófagos , Antígenos de Diferenciação de Linfócitos T/genéticaRESUMO
Developing adsorbent materials for the efficient removal of multiple organic pollutants in water is of importance technological significance. In the present work, a kind of conjugated microporous polymer (CMP) with a hollow sphere structure was constructed by applying SiO2 nanoparticles as a template and 1,3,5-triethynylbenzene (TEB) and 2,7-dibromocarbazole (27-DBCZ) as building blocks via the Sonogashira-Hagihara cross-coupling reaction. In order to further improve the dispersibility of the as-resulting CMPs in water, hydrophilic CMPs (H-S-CMPs) were obtained by a sulfonation modification. The adsorption performance of H-S-CMPs on dyes and antibiotics was investigated, which was based on different experimental parameters such as the initial concentration, contact time, temperature, pH, and adsorbent dose. The adsorption isotherm, kinetics, and thermodynamics were also studied, and the possible adsorption mechanism of H-S-CMPs was discussed. The experimental results illustrated that the adsorption process of H-S-CMPs on dyes and antibiotics is more consistent with the Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum adsorption capacities of H-S-CMPs for rhodamine B (RhB), methylene blue (MB), ciprofloxacin, and norfloxacin were 206.2, 324.7, 222.2, and 216.9 mg/g, respectively, which were determined according to the Langmuir isothern model. In addition, the adsorption mechanism of H-S-CMPs may be attributed to the synergistic effects of hydrogen bonding, electrostatic attraction, π-π stacking, and pore filling. After 5 cycles, H-S-CMPs still maintained good stability, and their removal rate of dyes could reach more than 70%. Notably, this polymeric hollow microsphere has been less extensively investigated as an adsorbent for the removal of dyes and antibiotics. As a result, based on the designable flexibility of CMPs and the unique structure of hollow microspheres, the material holds great promise for wastewater treatment in the presence of multiple pollutants.
RESUMO
Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.
Assuntos
Águas Residuárias , Adsorção , Águas Residuárias/química , Poluentes Químicos da Água/química , Alginatos/química , Celulose/química , Óleos/química , Biodegradação Ambiental , Polímeros/químicaRESUMO
The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.
RESUMO
BACKGROUND: How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE: To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS: Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS: During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS: Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.
Assuntos
Doença de Parkinson , Humanos , Estudos de Coortes , Doença de Parkinson/epidemiologia , Sono , Exercício Físico , Comportamento de Redução do Risco , Fatores de RiscoRESUMO
Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.
Assuntos
Neoplasias Colorretais , Ferroptose , Proteínas de Membrana , Piperazinas , Proibitinas , Proteínas Repressoras , Humanos , Ferroptose/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células CACO-2 , Piperazinas/farmacologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Células HT29 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
In the assay for Brucella, the identification and differentiation of wild strains and vaccine strains present a significant challenge. Currently, there aren't any commercially available product to address this issue. In this study, we have developed a novel gated nanoprobe by utilizing Metal-Organic Frameworks (MOFs) as a scaffold and hairpin DNA as a "gating switch". Specifically, Probe 1 with hairpin structure (P1h) targets a gene that is present in both wild strains Y3 (B. melitensis biovar 3) and vaccine strains A19 (Brucella abortus strains A19). We successfully applied this probe to screen positive samples of Brucella without any cross-reactivity with other substances. Additionally, we identified another specific gene exclusively found in wild strains, which serves as Probe 2 with hairpin structure (P2h) to confirm the strain type. Simultaneous detachment of both P1h and P2h from the MOFs leads to the release of Rhodamine 6G (Rho 6G) and Fluorescein (Flu), specifically indicating the presence of wild strains. If only P1h detaches and the Flu signal is detected, it suggests the presence of vaccine strains. Importantly, this method offers high accuracy, with a detection rate of 90% and a recovery rate of 94.71% to 107.65%, while avoiding cross-reactions with MO and TB. This one-step experiment provides reliable identification and differentiation of Y3 and A19, addressing concerns related to long periodicity, interference from individual variations, and the complex design of primers in existing laboratory methods. Furthermore, our approach successfully detects target 1 (T1) and target 2 (T2) at concentrations ranging from 10-6 M to 10-9 M, with a detection limit of 6.7 × 10-10 M and 6.4 × 10-10 M, respectively. Importantly, our strategy is cost-effective (around $1) and offers higher detection efficiency compared to traditional laboratory methods.
Assuntos
Estruturas Metalorgânicas , Vacinas , Brucella abortus/genética , Primers do DNA , DNA BacterianoRESUMO
Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.