Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(1): 61-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177310

RESUMO

Accumulation of DNA damage in the lung induces cellular senescence and promotes age-related diseases such as idiopathic pulmonary fibrosis (IPF). Hence, understanding the mechanistic regulation of DNA damage repair is important for anti-aging therapies and disease control. Here, we identified an m6A-independent role of the RNA-binding protein YTHDC1 in counteracting stress-induced pulmonary senescence and fibrosis. YTHDC1 is primarily expressed in pulmonary alveolar epithelial type 2 (AECII) cells and its AECII expression is significantly decreased in AECIIs during fibrosis. Exogenous overexpression of YTHDC1 alleviates pulmonary senescence and fibrosis independent of its m6A-binding ability, while YTHDC1 deletion enhances disease progression in mice. Mechanistically, YTHDC1 promotes the interaction between TopBP1 and MRE11, thereby activating ATR and facilitating DNA damage repair. These findings reveal a noncanonical function of YTHDC1 in delaying cellular senescence, and suggest that enhancing YTHDC1 expression in the lung could be an effective treatment strategy for pulmonary fibrosis.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA , Animais , Camundongos , Envelhecimento/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615088

RESUMO

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Assuntos
Adenosina/análogos & derivados , Neoplasias de Cabeça e Pescoço/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Hibridização de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 597(7876): 398-403, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433965

RESUMO

Somatic mutations that accumulate in normal tissues are associated with ageing and disease1,2. Here we performed a comprehensive genomic analysis of 1,737 morphologically normal tissue biopsies of 9 organs from 5 donors. We found that somatic mutation accumulations and clonal expansions were widespread, although to variable extents, in morphologically normal human tissues. Somatic copy number alterations were rarely detected, except for in tissues from the oesophagus and cardia. Endogenous mutational processes with the SBS1 and SBS5 mutational signatures are ubiquitous among normal tissues, although they exhibit different relative activities. Exogenous mutational processes operate in multiple tissues from the same donor. We reconstructed the spatial somatic clonal architecture with sub-millimetre resolution. In the oesophagus and cardia, macroscopic somatic clones that expanded to hundreds of micrometres were frequently seen, whereas in tissues such as the colon, rectum and duodenum, somatic clones were microscopic in size and evolved independently, possibly restricted by local tissue microstructures. Our study depicts a body map of somatic mutations and clonal expansions from the same individual.


Assuntos
Células Clonais/metabolismo , Saúde , Mutagênese , Mutação , Especificidade de Órgãos , Idoso de 80 Anos ou mais , Biópsia , Cadáver , Cárdia/metabolismo , Proliferação de Células , Células Clonais/citologia , Esôfago/metabolismo , Feminino , Genômica , Humanos , Masculino
4.
Proc Natl Acad Sci U S A ; 121(25): e2321614121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857401

RESUMO

The medial prefrontal cortex (mPFC) is a key brain structure for higher cognitive functions such as decision-making and goal-directed behavior, many of which require awareness of spatial variables including one's current position within the surrounding environment. Although previous studies have reported spatially tuned activities in mPFC during memory-related trajectory, the spatial tuning of mPFC network during freely foraging behavior remains elusive. Here, we reveal geometric border or border-proximal representations from the neural activity of mPFC ensembles during naturally exploring behavior, with both allocentric and egocentric boundary responses. Unlike most of classical border cells in the medial entorhinal cortex (MEC) discharging along a single wall, a large majority of border cells in mPFC fire particularly along four walls. mPFC border cells generate new firing fields to external insert, and remain stable under darkness, across distinct shapes, and in novel environments. In contrast to hippocampal theta entrainment during spatial working memory tasks, mPFC border cells rarely exhibited theta rhythmicity during spontaneous locomotion behavior. These findings reveal spatially modulated activity in mPFC, supporting local computation for cognitive functions involving spatial context and contributing to a broad spatial tuning property of cortical circuits.


Assuntos
Córtex Pré-Frontal , Ritmo Teta , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Animais , Ritmo Teta/fisiologia , Masculino , Camundongos , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Memória Espacial/fisiologia , Camundongos Endogâmicos C57BL , Memória de Curto Prazo/fisiologia
5.
EMBO Rep ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448865

RESUMO

Bone cancer pain (BCP) affects ~70% of patients in advanced stages, primarily due to bone metastasis, presenting a substantial therapeutic challenge. Here, we profile orphan G protein-coupled receptors in the dorsal root ganglia (DRG) following tumor infiltration, and observe a notable increase in GPR160 expression. Elevated Gpr160 mRNA and protein levels persist from postoperative day 6 for over 18 days in the affected DRG, predominantly in small-diameter C-fiber type neurons specific to the tibia. Targeted interventions, including DRG microinjection of siRNA or AAV delivery, mitigate mechanical allodynia, cold, and heat hyperalgesia induced by the tumor. Tumor infiltration increases DRG neuron excitability in wild-type mice, but not in Gpr160 gene knockout mice. Tumor infiltration results in reduced H3K27me3 and increased H3K27ac modifications, enhanced binding of the transcription activator Sp1 to the Gpr160 gene promoter region, and induction of GPR160 expression. Modulating histone-modifying enzymes effectively alleviated pain behavior. Our study delineates a novel mechanism wherein elevated Sp1 levels facilitate Gpr160 gene transcription in nociceptive DRG neurons during BCP in rodents.

6.
Proc Natl Acad Sci U S A ; 120(32): e2219905120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527341

RESUMO

Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), an adenosine triphosphate (ATP)-binding cassette (ABC) transporter on the digestive vacuole (DV) membrane of the parasite, is associated with the resistance to antimalarial drugs. To understand the mechanisms of PfMDR1, we determined the cryo-electron microscopy structures of this transporter in different states. The transporter in the apo state shows an inward-facing conformation with a large cavity opening to the cytoplasm. Upon ATP binding and dimerization of the nucleotide-binding domains (NBDs), PfMDR1 displays an outward-facing conformation with a cavity toward the DV lumen. Drug resistance-associated mutations were investigated in both structures for their effects, and Y184F was identified as an allosteric activity-enhancing mutation. The amphiphilic substrate-binding site of PfMDR1 was revealed by the complex structure with the antimalarial drug mefloquine and confirmed by mutagenesis studies. Remarkably, a helical structure was found to hinder NBD dimerization and inhibit PfMDR1 activity. The location of this regulatory domain in the N terminus is different from the well-studied R domain in the internal linker region of other ABC transporter family members. The lack of the phosphorylation site of this domain also suggests a different regulation mechanism.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Microscopia Crioeletrônica , Antimaláricos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia
7.
J Biol Chem ; 300(9): 107669, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128717

RESUMO

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cromo , Intestino Delgado , Proteína Fosfatase 2 , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Cromo/toxicidade , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo , Camundongos Knockout , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia
8.
Plant Physiol ; 196(2): 1642-1658, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082752

RESUMO

NAC (NAM, ATAF1/2, and CUC2) family transcription factors are involved in several cellular processes, including responses to drought, salinity, cold, and submergence. However, whether or how certain NAC proteins regulate drought tolerance in rice (Oryza sativa) remain unclear. In this study, we show that overexpression of OsNAC78 enhanced rice resistance to drought treatment, whereas Osnac78 mutant plants were susceptible to drought stress. We further characterized the OsNAC78 interacting protein, named NAC78 interacting protein 6 (OsNACIP6), and found that it conferred rice drought tolerance. Our results demonstrate that OsNACIP6 enhanced the transcription of OsNAC78 and promoted the expression of its downstream target OsGSTU37, encoding a glutathione reductase. The ABRE4 cis-element in the promoter region of OsNACIP675-1-127 conferred significant upregulation of OsNACIP6 expression and initiated the OsNACIP6/OsNAC78-OsGSTU37 module that facilitates rice growth under drought conditions. Together, our results uncover a transcriptional module composed of OsNACIP6, OsNAC78, and OsGSTU37 and provide insights into the molecular mechanisms underlying the drought stress response in rice.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas , Adaptação Fisiológica/genética , Regiões Promotoras Genéticas/genética , Resistência à Seca
9.
Proc Natl Acad Sci U S A ; 119(34): e2202821119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969743

RESUMO

Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Cerebelo/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Neurogênese/fisiologia
10.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843465

RESUMO

Bioassay systems that can selectively detect biomarkers at both high and low levels are of great importance for clinical diagnosis. In this work, we report an enzyme electrode with an oxygen reduction reaction (ORR)-tolerant H2O2 reduction property and an air-liquid-solid triphase interface microenvironment by regulating the surface defects and wettability of nanoporous tin oxide (SnOx). The enzyme electrode allows the oxygen that is required for the oxidase catalytic reaction to be transported from the air phase to the reaction zone, which greatly enhances the enzymatic kinetics and increases the linear detection upper limit. Meanwhile, the ORR-tolerant H2O2 reduction property of SnOx catalysts achieved via oxygen vacancy engineering greatly reduces the interferent signals caused by oxygen and various easily oxidizable endogenous/exogenous species, which enables the selective detection of biomarkers at trace levels. The synergistic effect between these two novel qualities features a bioassay system with a wide dynamic linear range and high selectivity for the accurate detection of a wide range of biomarkers, such as glucose, lactic acid, uric acid, and galactose, offering the potential for reliable clinical diagnosis applications.

11.
Anal Chem ; 96(18): 7005-7013, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657082

RESUMO

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Assuntos
Arilamina N-Acetiltransferase , Carcinoma Hepatocelular , Corantes Fluorescentes , Sulfeto de Hidrogênio , Neoplasias Hepáticas , Fótons , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Arilamina N-Acetiltransferase/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Animais , Camundongos , Células Hep G2 , Imagem Óptica
12.
Biochem Biophys Res Commun ; 692: 149359, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071893

RESUMO

BACKGROUND: Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS: A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS: This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Camundongos , Injúria Renal Aguda/genética , Proteínas Reguladoras de Apoptose , Sobrevivência Celular , Biologia Computacional , Bases de Dados Factuais , Ferroptose/genética , Monoéster Fosfórico Hidrolases
13.
Small ; : e2403576, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183525

RESUMO

Lithium-sulfur batteries have emerged as a promising energy storage device due to ultra-high theoretical capacity, but the slow kinetics of sulfur and polysulfide shuttle hinder the batteries' further development. Here, the 10% cobalt-doped pyrite iron disulfide electrocatalyst deposited on acetylene black as a separator coating in lithium-sulfur batteries is reported. The adsorption rate to the intermediate Li2S6 is significantly improved while surface oxidation of FeS2 is inhibited: iron oxide and sulfate, thus avoiding FeS2 electrocatalyst deactivation. The electrocatalytic activity has been evaluated in terms of electronic resistivity, lithium-ion diffusion, liquid-liquid, and liquid-solid conversion kinetics. The coin batteries exhibit ultra-long cycle life at 1 C with an initial capacity of 854.7 mAh g-1 and maintained at 440.8 mAh g-1 after 920 cycles. Furthermore, the separator is applied to a laminated pouch battery with a sulfur mass of 326 mg (3.7 mg cm-2) and retained the capacity of 590 mAh g-1 at 0.1 C after 50 cycles. This work demonstrates that FeS2 electrocatalytic activity can be improved when Co-doped FeS2 suppresses surface oxidation and provides a reference for low-cost separator coating design in pouch batteries.

14.
Small ; 20(24): e2311174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174619

RESUMO

Modulating the coordination configuration of single Fe atom has been an efficient strategy to strengthen the redox dynamics for lithium-sulfur batteries (LSBs) but remains challenging. Herein, the single Fe atom is functioned with nitrogen and carbon atoms in the first shell, and simultaneously, oxidized sulfur (─SOx) in the second shell, which presents a lower antibonding state and well address the redox activity of sulfur cathodes. In the ternary-coordinated single Fe atom catalyst (FeN2C2-SOx-NC), the binary structure of FeN2C2 provides a lower Fe-S bonding strength and d-p orbital hybridization, which obviously optimizes the adsorption and desorption behavior of sulfur species during the reduction and oxidation reaction processes. Simultaneously, the ─SOx redistributes the electron density of the coordinating nitrogen atoms, which possesses high electron-withdrawing ability and develops electrocatalytic activity. As a result, the sulfur cathodes with FeN2C2-SOx-NC present an excellent high-rate cyclic performance, accompanied by a capacity decay rate of 0.08% per cycle for 500 cycles at 4.0 C. This study provides new insights for optimizing the redox dynamics of sulfur cathodes in LSBs at the atomic level.

15.
Cytokine ; 180: 156676, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857560

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Quimiocina CXCL12 , Progressão da Doença , Interleucina-17 , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt , Interleucina-17/metabolismo , Quimiocina CXCL12/metabolismo , Humanos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Camundongos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo
16.
Respir Res ; 25(1): 250, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902783

RESUMO

INTRODUCTION: Lower respiratory tract infections(LRTIs) in adults are complicated by diverse pathogens that challenge traditional detection methods, which are often slow and insensitive. Metagenomic next-generation sequencing (mNGS) offers a comprehensive, high-throughput, and unbiased approach to pathogen identification. This retrospective study evaluates the diagnostic efficacy of mNGS compared to conventional microbiological testing (CMT) in LRTIs, aiming to enhance detection accuracy and enable early clinical prediction. METHODS: In our retrospective single-center analysis, 451 patients with suspected LRTIs underwent mNGS testing from July 2020 to July 2023. We assessed the pathogen spectrum and compared the diagnostic efficacy of mNGS to CMT, with clinical comprehensive diagnosis serving as the reference standard. The study analyzed mNGS performance in lung tissue biopsies and bronchoalveolar lavage fluid (BALF) from cases suspected of lung infection. Patients were stratified into two groups based on clinical outcomes (improvement or mortality), and we compared clinical data and conventional laboratory indices between groups. A predictive model and nomogram for the prognosis of LRTIs were constructed using univariate followed by multivariate logistic regression, with model predictive accuracy evaluated by the area under the ROC curve (AUC). RESULTS: (1) Comparative Analysis of mNGS versus CMT: In a comprehensive analysis of 510 specimens, where 59 cases were concurrently collected from lung tissue biopsies and BALF, the study highlights the diagnostic superiority of mNGS over CMT. Specifically, mNGS demonstrated significantly higher sensitivity and specificity in BALF samples (82.86% vs. 44.42% and 52.00% vs. 21.05%, respectively, p < 0.001) alongside greater positive and negative predictive values (96.71% vs. 79.55% and 15.12% vs. 5.19%, respectively, p < 0.01). Additionally, when comparing simultaneous testing of lung tissue biopsies and BALF, mNGS showed enhanced sensitivity in BALF (84.21% vs. 57.41%), whereas lung tissues offered higher specificity (80.00% vs. 50.00%). (2) Analysis of Infectious Species in Patients from This Study: The study also notes a concerning incidence of lung abscesses and identifies Epstein-Barr virus (EBV), Fusobacterium nucleatum, Mycoplasma pneumoniae, Chlamydia psittaci, and Haemophilus influenzae as the most common pathogens, with Klebsiella pneumoniae emerging as the predominant bacterial culprit. Among herpes viruses, EBV and herpes virus 7 (HHV-7) were most frequently detected, with HHV-7 more prevalent in immunocompromised individuals. (3) Risk Factors for Adverse Prognosis and a Mortality Risk Prediction Model in Patients with LRTIs: We identified key risk factors for poor prognosis in lower respiratory tract infection patients, with significant findings including delayed time to mNGS testing, low lymphocyte percentage, presence of chronic lung disease, multiple comorbidities, false-negative CMT results, and positive herpesvirus affecting patient outcomes. We also developed a nomogram model with good consistency and high accuracy (AUC of 0.825) for predicting mortality risk in these patients, offering a valuable clinical tool for assessing prognosis. CONCLUSION: The study underscores mNGS as a superior tool for lower respiratory tract infection diagnosis, exhibiting higher sensitivity and specificity than traditional methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Infecções Respiratórias , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Fatores de Risco , Idoso , Adulto , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Hospitalização , Valor Preditivo dos Testes
17.
Langmuir ; 40(6): 3241-3247, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289291

RESUMO

The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Oxirredução , Glucose , Bioensaio
18.
Lupus ; 33(2): 172-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081170

RESUMO

As a therapeutic treatment for systemic lupus erythematosus (SLE), Belimumab reduces disease relapses and minimizes organ damage. Clinical practice, however, shows that the treatment is ineffective for a number of patients. Treatments for such cases are still lacking. As a biologic agent that targets both BLys and APRIL, Telitacicept inhibits both B cells and plasma cells. This case report describes a 35-year-old female with lupus nephritis (LN) who had previously undergone 10 cycles of Belimumab treatment but remained poorly controlled. Despite this, her condition improved significantly after switching to Telitacicept. This is the first report on the efficacy of Telitacicept in an SLE patient with suboptimal response to Belimumab. Telitacicept's role in this scenario needs more investigation and attention.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Proteínas Recombinantes de Fusão , Humanos , Feminino , Adulto , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Nefrite Lúpica/tratamento farmacológico , Resultado do Tratamento , Imunossupressores/uso terapêutico
19.
Nanotechnology ; 35(24)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471145

RESUMO

Over the past few decades, single-element semiconductors have received a great deal of attention due to their unique light-sensitive and heat-sensitive properties, which are of great application and research significance. As one promising material, selenium, being a typical semiconductor, has attracted significant attention from researchers due to its unique properties including high optical conductivity, anisotropic, thermal conductivity, and so on. To promote the application of selenium nanomaterials in various fields, numerous studies over the past few decades have successfully synthesized selenium nanomaterials in various morphologies using a wide range of physical and chemical methods. In this paper, we review and summarise the different methods of synthesis of various morphologies of selenium nanomaterials and discuss the applications of different nanostructures of selenium nanomaterials in optoelectronic devices, chemical sensors, and biomedical applications. Finally, we discuss possible challenges for selenium nanodevices and provide an outlook on the future applications of selenium nanomaterials.

20.
Kidney Blood Press Res ; 49(1): 310-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648755

RESUMO

INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is a common glomerulopathy with an unclear mechanism. The demand for FSGS clinical diagnostic biomarkers has not yet been met. Circular RNA (circRNA) is a novel non-coding RNA with multiple functions, but its diagnostic value for FSGS remains unexplored. This study aimed to identify circRNAs that could aid in early clinical diagnosis and to investigate their mechanisms in podocyte injury. METHODS: The signature of plasma circRNAs for FSGS was identified by circRNA microarray. The existence of circRNAs was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), RNase R assay, and DNA sequencing. Plasma levels of circRNAs were evaluated by qRT-PCR. The diagnostic value was appraised by the receiver operating characteristic curve. The circRNA-miRNA-mRNA network was built with Cytoscape 7.3.2. Statistically significant differences were calculated by the Mann-Whitney U test. RESULTS: A total of 493 circRNAs (165 upregulated, 328 downregulated) were differentially expressed in the plasma of FSGS patients (n = 3) and normal controls (n = 3). Eight candidate circRNAs were demonstrated to be circular and stable transcripts. Among them, hsa_circ_0001230 and hsa_circ_0023879 were significantly upregulated in FSGS patients (n = 29) compared to normal controls (n = 51). The areas under the curve value of hsa_circ_0001230 and hsa_circ_0023879 were 0.668 and 0.753, respectively, while that of the two-circRNA panel was 0.763. The RNA pull-down analysis revealed that hsa_circ_0001230 and hsa_circ_0023879 could sponge hsa-miR-106a. Additionally, hsa_circ_0001230 and hsa_circ_0023879 positively regulated hsa-miR-106a target genes phosphatase and tensin homolog (PTEN) and Bcl-2-like protein 11 (BCL2L11) in podocytes. CONCLUSION: hsa_circ_0001230 and hsa_circ_0023879 are novel blood biomarkers for FSGS. They may regulate podocyte apoptosis by competitively binding to hsa-miR-106a.


Assuntos
Biomarcadores , Glomerulosclerose Segmentar e Focal , MicroRNAs , RNA Circular , RNA Mensageiro , Humanos , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/diagnóstico , RNA Circular/sangue , RNA Circular/genética , Biomarcadores/sangue , MicroRNAs/sangue , MicroRNAs/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Podócitos/metabolismo , Podócitos/patologia , Masculino , Feminino , Adulto , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa