Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 83(7): 1027-1029, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028414

RESUMO

Nassour et al.1 report that telomere dysfunction communicates with mitochondria via the ZBP1-TERRA-MAVS axis. This pathway activates a detrimental innate immune response that may promote the elimination of cells prone to oncogenic transformation during replicative crisis, thus serving as a telomere-dependent tumor-suppressive mechanism.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Telômero/metabolismo , Replicação do DNA , Neoplasias/metabolismo , Mitocôndrias/metabolismo
2.
Nucleic Acids Res ; 52(11): 6472-6489, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38752489

RESUMO

Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.


Assuntos
Fibroblastos , Proteína da Leucemia Promielocítica , Homeostase do Telômero , Humanos , Animais , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Camundongos , Fibroblastos/metabolismo , Telômero/metabolismo , Telômero/genética , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Troca de Cromátide Irmã , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Trióxido de Arsênio/farmacologia , Chaperonas Moleculares
3.
J Formos Med Assoc ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38914514

RESUMO

BACKGROUND/PURPOSE: Insufficient numbers of peripheral blood stem cells (PBSC) after granulocyte colony-stimulating factor (G-CSF) mobilization occurs in a significant proportion of PBSC collections, often from older age donors. Telomere length (TL) is often used as an indicator of an individual's biological age. This study aimed to investigate the relationship between donors' leukocyte TL and the outcome of G-CSF-induced PBSC mobilization in healthy unrelated donors. METHODS: Donors' leukocyte TLs and the outcome of G-CSF-induced PBSC mobilization, as assessed by pre-harvest CD34+ cell counts, were analyzed in 39 healthy PBSC donors. TL in a non-mobilized general population (n = 90) was included as a control group. G-CSF mobilization effect was categorized into three groups according to pre-harvest CD34+ cell count: poor (≤25/µL, PMD), intermediate (between 25 and 180/µL), and good (≥180/µl, GMD). RESULTS: Leukocyte TL of PBSC donors correlated well with pre-harvest CD34+ cell counts (r = 0.645, p < 0.001). Leukocyte TLs of PMDs (n = 8) were significantly shorter than those of GMDs (n = 9) and non-mobilization controls (p < 0.05). Moreover, all PMD TLs were below the 50th percentile, and 62.5% of PMDs had TLs below the 10th percentile of age-matched control participants. In contrast, no GMD TLs were below the 10th percentile; in fact, 33.3% (3/9) of them were above the 90th percentile. CONCLUSION: Our results indicate that shorter donor leukocyte TL is associated with poor G-CSF-induced PBSC mobilization. TL, which represents a donor's biological age, could be a potential predictor for mobilization outcome.

4.
Bioorg Med Chem ; 95: 117502, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866089

RESUMO

A structure-activity relationship (SAR) study of stimulator of interferon gene (STING) inhibition was performed using a series of indol-3-yl-N-phenylcarbamic amides and indol-2-yl-N-phenylcarbamic amides. Among these analogs, compounds 10, 13, 15, 19, and 21 inhibited the phosphorylation of STING and interferon regulatory factor 3 (IRF3) to a greater extent than the reference compound, H-151. All five analogs showed stronger STING inhibition than H-151 on the 2',3'-cyclic GMP-AMP-induced expression of interferon regulatory factors (IRFs) in a STINGR232 knock-in THP-1 reporter cell line. The half-maximal inhibitory concentration of the most potent compound, 21, was 11.5 nM. The molecular docking analysis of compound 21 and STING combined with the SAR study suggested that the meta- and para-positions of the benzene ring of the phenylcarbamic amide moiety could be structurally modified by introducing halides or alkyl substituents.


Assuntos
Amidas , Nucleotidiltransferases , Amidas/farmacologia , Simulação de Acoplamento Molecular , Fosforilação , Relação Estrutura-Atividade , Nucleotidiltransferases/metabolismo
5.
Pediatr Blood Cancer ; 69(8): e29781, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593015

RESUMO

Primary mediastinal non-seminomatous germ cell tumors (PMNSGCT) are rare but life-threatening thoracic cancers. We report our experience from eight patients with peri-treatment adverse events. By analyzing changes in tumor extent, serum tumor markers, and pathologies between diagnosis and transfer, those events could be attributed to postbiopsy respiratory insufficiency, growing teratoma syndrome, secondary histiocytic malignancy, and PMNSGCT progression. Subjecting patients to respiratory therapy, conventional or high-dose chemotherapy, and surgery controlled the disease, with five of the eight patients surviving disease free. These outcomes indicate that integrated appropriate and timely approaches are important in tackling peri-treatment adverse events.


Assuntos
Neoplasias do Mediastino , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Masculino , Neoplasias do Mediastino/patologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/patologia
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499545

RESUMO

Most cases of acquired aplastic anemia (AA) arise from autoimmune destruction of hematopoietic stem and progenitor cells. Human leukocyte antigen (HLA)-haploidentical nonmyeloablative hematopoietic stem cell transplantation (HSCT) plus post-transplantation cyclophosphamide (PTCy) is increasingly applied to salvage AA using bone marrow as graft and anti-thymocyte globulin (ATG) in conditioning. Herein, we characterize a cohort of twelve AA patients clinically and molecularly, six who possessed other immunological disorders (including two also carrying germline SAMD9L mutations). Each patient with SAMD9L mutation also carried an AA-related rare BCORL1 variant or CTLA4 p.T17A GG genotype, respectively, and both presented short telomere lengths. Six of the ten patients analyzed harbored AA-risky HLA polymorphisms. All patients recovered upon non-HSCT (n = 4) or HSCT (n = 8) treatments. Six of the eight HSCT-treated patients were subjected to a modified PTCy-based regimen involving freshly prepared peripheral blood stem cells (PBSC) as graft and exclusion of ATG. All patients were engrafted between post-transplantation days +13 and +18 and quickly reverted to normal life, displaying a sustained complete hematologic response and an absence of graft-versus-host disease. These outcomes indicate most AA cases, including of the SAMD9L-inherited subtype, are immune-mediated and the modified PTCy-based regimen we present is efficient and safe for salvage.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Soro Antilinfocitário/uso terapêutico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Condicionamento Pré-Transplante , Doença Enxerto-Hospedeiro/etiologia , Ciclofosfamida/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Antígenos HLA , Estudos Retrospectivos
7.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012751

RESUMO

Graves' disease, characterized by hyperthyroidism resulting from loss of immune tolerance to thyroid autoantigens, may be attributable to both genetic and environmental factors. Allogeneic hematopoietic stem cell transplantation (HSCT) represents a means to induce immunotolerance via an artificial immune environment. We present a male patient with severe aplastic anemia arising from a germline SAMD9L missense mutation who successfully underwent HSCT from his HLA-haploidentical SAMD9L non-mutated father together with nonmyeloablative conditioning and post-transplant cyclophosphamide at 8 years of age. He did not suffer graft-versus-host disease, but Graves' disease evolved 10 months post-transplant when cyclosporine was discontinued for one month. Reconstitution of peripheral lymphocyte subsets was found to be transiently downregulated shortly after Graves' disease onset but recovered upon antithyroid treatment. Our investigation revealed the presence of genetic factors associated with Graves' disease, including HLA-B*46:01 and HLA-DRB1*09:01 haplotypes carried by the asymptomatic donor and germline FLT3 c.2500C>T mutation carried by both the patient and the donor. Given his current euthyroid state with normal hematopoiesis, the patient has returned to normal school life. This rare event of Graves' disease in a young boy arising from special HSCT circumstances indicates that both the genetic background and the HSCT environment can prompt the evolution of Graves' disease.


Assuntos
Doença Enxerto-Hospedeiro , Doença de Graves , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Transplante de Células-Tronco de Sangue Periférico , Células Germinativas , Doença Enxerto-Hospedeiro/genética , Doença de Graves/genética , Doença de Graves/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Tirosina Quinase 3 Semelhante a fms
8.
J Biomed Sci ; 28(1): 81, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819065

RESUMO

BACKGROUND: RAD51-dependent homologous recombination (HR) is one of the most important pathways for repairing DNA double-strand breaks (DSBs), and its regulation is crucial to maintain genome integrity. Elp1 gene encodes IKAP/ELP1, a core subunit of the Elongator complex, which has been implicated in translational regulation. However, how ELP1 contributes to genome maintenance is unclear. METHODS: To investigate the function of Elp1, Elp1-deficient mouse embryonic fibroblasts (MEFs) were generated. Metaphase chromosome spreading, immunofluorescence, and comet assays were used to access chromosome abnormalities and DSB formation. Functional roles of Elp1 in MEFs were evaluated by cell viability, colony forming capacity, and apoptosis assays. HR-dependent DNA repair was assessed by reporter assay, immunofluorescence, and western blot. Polysome profiling was used to evaluate translational efficiency. Differentially expressed proteins and signaling pathways were identified using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach. RESULTS: Here, we report that Elp1 depletion enhanced genomic instability, manifested as chromosome breakage and genotoxic stress-induced genomic DNA fragmentation upon ionizing radiation (IR) exposure. Elp1-deficient cells were hypersensitive to DNA damage and exhibited impaired cell proliferation and defective HR repair. Moreover, Elp1 depletion reduced the formation of IR-induced RAD51 foci and decreased RAD51 protein levels. Polysome profiling analysis revealed that ELP1 regulated RAD51 expression by promoting its translation in response to DNA damage. Notably, the requirement for ELP1 in DSB repair could be partially rescued in Elp1-deficient cells by reintroducing RAD51, suggesting that Elp1-mediated HR-directed repair of DSBs is RAD51-dependent. Finally, using proteome analyses, we identified several proteins involved in cancer pathways and DNA damage responses as being differentially expressed upon Elp1 depletion. CONCLUSIONS: Our study uncovered a molecular mechanism underlying Elp1-mediated regulation of HR activity and provides a novel link between translational regulation and genome stability.


Assuntos
Quebra Cromossômica , Dano ao DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Biossíntese de Proteínas/genética , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/genética , Animais , Fibroblastos , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Rad51 Recombinase/metabolismo
9.
Genes Dev ; 27(19): 2099-108, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24115768

RESUMO

Mutations in CTC1 lead to the telomere syndromes Coats Plus and dyskeratosis congenita (DC), but the molecular mechanisms involved remain unknown. CTC1 forms with STN1 and TEN1 a trimeric complex termed CST, which binds ssDNA, promotes telomere DNA synthesis, and inhibits telomerase-mediated telomere elongation. Here we identify CTC1 disease mutations that disrupt CST complex formation, the physical interaction with DNA polymerase α-primase (polα-primase), telomeric ssDNA binding in vitro, accumulation in the nucleus, and/or telomere association in vivo. While having diverse molecular defects, CTC1 mutations commonly lead to the accumulation of internal single-stranded gaps of telomeric DNA, suggesting telomere DNA replication defects as a primary cause of the disease. Strikingly, mutations in CTC1 may also unleash telomerase repression and telomere length control. Hence, the telomere defect initiated by CTC1 mutations is distinct from the telomerase insufficiencies seen in classical forms of telomere syndromes, which cause short telomeres due to reduced maintenance of distal telomeric ends by telomerase. Our analysis provides molecular evidence that CST collaborates with DNA polα-primase to promote faithful telomere DNA replication.


Assuntos
Doenças Genéticas Inatas/genética , Mutação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Ataxia/genética , Neoplasias Encefálicas/genética , Calcinose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cistos do Sistema Nervoso Central/genética , Disceratose Congênita/genética , Regulação da Expressão Gênica , Genes myc/genética , Células HEK293 , Humanos , Leucoencefalopatias/genética , Espasticidade Muscular/genética , Doenças Retinianas/genética , Convulsões/genética , Síndrome , Homeostase do Telômero/genética , Tubulina (Proteína)/genética
10.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673424

RESUMO

Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.


Assuntos
Aminopeptidases/metabolismo , DNA Polimerase beta/metabolismo , Quadruplex G , Serina Proteases/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Humanos , Complexos Multiproteicos , Proteína de Replicação A/metabolismo , Complexo Shelterina , Telômero/química , Telômero/metabolismo
11.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446584

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway mediates anti-microbial innate immunity by inducing the production of type I interferons (IFNs) and inflammatory cytokines upon recognition of microbial DNA. Recent studies reveal that self-DNA from tumors and by-products of genomic instability also activates the cGAS-STING pathway and either promotes or inhibits tumor development. This has led to the development of cancer therapeutics using STING agonists alone and in combination with conventional cancer treatment or immune checkpoint targeting. On the other hand, for cancers lacking the cGAS-STING pathway and thus a regular innate immunity response, oncolytic virus therapy has been shown to have therapeutic potential. We here review and discuss the dichotomous roles of the cGAS-STING pathway in cancer development and therapeutic approaches.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Membrana/metabolismo , Neoplasias/terapia , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Animais , Humanos , Telômero/metabolismo
12.
Mol Cell ; 47(1): 1-2, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22793690

RESUMO

In this issue of Molecular Cell, Pont et al. (2012) show that AUF1/hnRNP D promotes TERT transcription, which is required for telomere maintenance in mice.

13.
Mol Cell ; 47(6): 839-50, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22885005

RESUMO

Both mitochondria, which are metabolic powerhouses, and telomeres, which help maintain genomic stability, have been implicated in cancer and aging. However, the signaling events that connect these two cellular structures remain poorly understood. Here, we report that the canonical telomeric protein TIN2 is also a regulator of metabolism. TIN2 is recruited to telomeres and associates with multiple telomere regulators including TPP1. TPP1 interacts with TIN2 N terminus, which contains overlapping mitochondrial and telomeric targeting sequences, and controls TIN2 localization. We have found that TIN2 is posttranslationally processed in mitochondria and regulates mitochondrial oxidative phosphorylation. Reducing TIN2 expression by RNAi knockdown inhibited glycolysis and reactive oxygen species (ROS) production and enhanced ATP levels and oxygen consumption in cancer cells. These results suggest a link between telomeric proteins and metabolic control, providing an additional mechanism by which telomeric proteins regulate cancer and aging.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Glicólise/genética , Humanos , Fosforilação Oxidativa , Consumo de Oxigênio , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Interferência de RNA , RNA Citoplasmático Pequeno , Espécies Reativas de Oxigênio/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética
14.
Trends Biochem Sci ; 40(5): 275-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25845889

RESUMO

Telomeres are nucleoprotein structures capping the natural termini of eukaryotic linear chromosomes. Telomeres possess an inherent ability to circumvent the activation of a full-blown DNA damage response (DDR), and hence fusion reactions, by limiting inappropriate double-strand break (DSB) repair and processing activities at eukaryotic chromosome ends. A telomere-specific protein complex, termed shelterin, has a crucial function in safeguarding and securing telomere integrity. Within this complex, TRF2 has emerged as the key player, dictating different states of telomere protection during the replicative lifespan of a cell. How TRF2 prevents activation of DSB repair activities at functional telomeres has now been extensively investigated. In this review we aim at exploring the complex and multi-faceted mechanisms underlying the TRF2-mediated protection of eukaryotic chromosome ends.


Assuntos
Cromossomos/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Cromatina/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética
15.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269755

RESUMO

Hoyeraal-Hreidarsson syndrome (HHS), caused by several different germline mutations resulting in severe telomeropathy, presents with early-onset growth anomalies and neurologic/developmental disorders including characteristic cerebellar hypoplasia. Early mortalities may arise from immunodeficiency and bone marrow failure if not successfully salvaged by allogeneic hematopoietic stem cell transplantation (HSCT). Few reports have characterized the persistent somatic progression of HHS after successful HSCT. We present an HHS patient with an X-linked recessive DKC1 c.1058C > T; Ala353Val mutation who successfully underwent unrelated HSCT at 5 years of age. After months of early infections and organ toxicities immediately post-transplant, he had more than two years of excellent quality of life with correction of bone marrow failure and immunodeficiency. However, episodic massive variceal bleeding and progressive respiratory insufficiency, which were secondary to non-cirrhotic portal hypertension and pulmonary arteriovenous shunts, respectively, developed over 2 years after HSCT and resulted in his death from respiratory failure 4 years after HSCT. This outcome suggests that while HSCT can correct bone marrow failure and immunodeficiency, it may fail to prevent or even aggravate other fatal processes, such as portal hypertension and pulmonary arteriovenous shunting.


Assuntos
Proteínas de Ciclo Celular/genética , Disceratose Congênita/terapia , Retardo do Crescimento Fetal/terapia , Deficiência Intelectual/terapia , Microcefalia/terapia , Proteínas Nucleares/genética , Transplante de Células-Tronco de Sangue Periférico , Pré-Escolar , Disceratose Congênita/complicações , Disceratose Congênita/genética , Disceratose Congênita/patologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Microcefalia/complicações , Microcefalia/genética , Microcefalia/patologia , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Transplante de Células-Tronco de Sangue Periférico/métodos , Mutação Puntual
16.
Nature ; 488(7412): 540-4, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22763445

RESUMO

The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)­TPP1 telomerase processivity factor. CST competes with POT1­TPP1 for telomeric DNA, and CST­telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.


Assuntos
Complexos Multiproteicos/metabolismo , Telomerase/antagonistas & inibidores , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Ensaios Enzimáticos , Fase G2 , Células HEK293 , Humanos , Longevidade , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Fase S , Complexo Shelterina , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
17.
Proc Natl Acad Sci U S A ; 110(14): 5457-62, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509301

RESUMO

Telomere maintenance is essential for organisms with linear chromosomes and is carried out by telomerase during cell cycle. The precise mechanism by which cell cycle controls telomeric access of telomerase and telomere elongation in mammals remains largely unknown. Previous work has established oligonucleotide/oligosaccharide binding (OB) fold-containing telomeric protein TPP1, formerly known as TINT1, PTOP, and PIP1, as a key factor that regulates telomerase recruitment and activity. However, the role of TPP1 in cell cycle-dependent telomerase recruitment is unclear. Here, we report that human TPP1 is phosphorylated at multiple sites during cell cycle progression and associates with higher telomerase activity at late S/G2/M. Phosphorylation of Ser111 (S111) within the TPP1 OB fold appears important for cell cycle-dependent telomerase recruitment. Structural analysis indicates that phosphorylated S111 resides in the telomerase-interacting domain within the TPP1 OB fold. Mutations that disrupt S111 phosphorylation led to decreased telomerase activity in the TPP1 complex and telomere shortening. Our findings provide insight into the regulatory pathways and structural basis that control cell cycle-dependent telomerase recruitment and telomere elongation through phosphorylation of TPP1.


Assuntos
Ciclo Celular/fisiologia , Modelos Moleculares , Conformação Proteica , Telomerase/metabolismo , Western Blotting , Primers do DNA/genética , Humanos , Imunoprecipitação , Espectrometria de Massas , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Complexo Shelterina , Proteínas de Ligação a Telômeros
18.
Elife ; 122024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752723

RESUMO

A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.


Assuntos
Fatores de Transcrição Kruppel-Like , Longevidade , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Longevidade/genética , Células Matadoras Naturais/imunologia , Neoplasias/genética , Engenharia Genética , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos Transgênicos
19.
Mol Cell Proteomics ; 10(2): M110.001628, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21044950

RESUMO

Detection of low-affinity or transient interactions can be a bottleneck in our understanding of signaling networks. To address this problem, we developed an arrayed screening strategy based on protein complementation to systematically investigate protein-protein interactions in live human cells, and performed a large-scale screen for regulators of telomeres. Maintenance of vertebrate telomeres requires the concerted action of members of the Telomere Interactome, built upon the six core telomeric proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. Of the ∼12,000 human proteins examined, we identified over 300 proteins that associated with the six core telomeric proteins. The majority of the identified proteins have not been previously linked to telomere biology, including regulators of post-translational modifications such as protein kinases and ubiquitin E3 ligases. Results from this study shed light on the molecular niche that is fundamental to telomere regulation in humans, and provide a valuable tool to investigate signaling pathways in mammalian cells.


Assuntos
Proteínas de Bactérias/química , Proteínas Luminescentes/química , Telômero/ultraestrutura , Citometria de Fluxo/métodos , Teste de Complementação Genética , Genoma , Humanos , Mapeamento de Interação de Proteínas , Proteínas/química , Proteoma , Retroviridae/genética , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/química , Ubiquitina/química , Ubiquitina-Proteína Ligases/química
20.
Structure ; 30(12): 1563-1564, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459974

RESUMO

Emerging models of telomere and associated proteins in Tetrahymena have broadened our understanding of telomeric processes. In this issue of Structure, Ma et al. pinpoint a region in p50 that associates with the CST complex. The interaction mediated by p50 is crucial for the optimal positioning of TERT to maintain homeostasis at the chromosome ends.


Assuntos
Telomerase , Tetrahymena , Domínio Catalítico , Telômero , Homeostase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa