Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 110: 381-388, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29803659

RESUMO

OBJECTIVE: We investigated the effect of topotecan on injury and inflammation in a model of ventilator-inducedlunginjury (VILI). METHODS: Acute lung injury (ALI) was induced in mice by high-tidal volume ventilation, and the mice were then treated with topotecan or PBS. Lung tissue and bronchoalveolar lavage fluid were collected to assess pulmonary vascular leaks, inflammation, and cell apoptosis. RESULTS: Compared to PBS treatment, topotecan significantly decreased the ALI score, myeloperoxidase (MPO) content, total protein concentration, and presence of inflammatory cells and inflammatory cytokines in bronchoalveolar lavage fluid. Topotecan also reduced caspase-3 activation and type Ⅱ alveolar epithelial cell apoptosis. Moreover, topotecan inhibited NF-κB expression and activation in the VILI model. CONCLUSION: Topotecan alleviates acute lung injury in the model of VILI through the inhibition of the NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo , Topotecan/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo
2.
Free Radic Biol Med ; 147: 159-166, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874250

RESUMO

OBJECTIVE: To investigate the role of geranylgeranyl diphosphate synthase 1 (GGPPS1) in ventilator-induced lung injury along with the underlying mechanism. METHODS: A murine VILI model was induced by high-tidal volume ventilation in both wild-type and GGPPS1 knockout mice. GGPPS1 expression was detected in the bronchoalveolar lavage fluid (BALF) supernatants of acute respiratory distress syndrome (ARDS) patients and healthy volunteers, as well as in lung tissues and BALF supernatants of the VILI mice using enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), western bolt and immunohistochemical (IHC). The wet/dry ratio, total BALF proteins, and lung injury score were analyzed. The percentage of neutrophils was detected by flow cytometry and IHC. Inflammatory cytokine levels were measured by ELISA and qRT-PCR. The related expression of Toll-like receptor (TLR)2/4 and its downstream proteins was evaluated by western blot. RESULTS: GGPPS1 in BALF supernatants was upregulated in ARDS patients and the VILI mice. Depletion of GGPPS1 significantly alleviated the severity of ventilator induced lung injury in mice. Total cell count, neutrophils and inflammatory cytokines (interleukin [IL]-6, IL-1ß, IL-18 and tumor necrosis factor-α) levels in BALF were reduced after GGPPS1 depletion. Moreover, addition of exogenous GGPP in GGPPS-deficient mice significantly exacerbated the severity of ventilator induced lung injury as compared to the PBS treated controls. Mechanistically, the expression of TLR2/4, as well as downstream proteins including activator protein-1 (AP-1) was suppressed in lung tissues of GGPPS1-deficient mice. CONCLUSION: GGPPS1 promoted the pathogenesis of VILI by modulating the TLR2/4-AP-1 signaling pathway, and GGPPS1 knockout significantly alleviated the lung injury and inflammation in the VILI mice.


Assuntos
Fator de Transcrição AP-1 , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar , Farnesiltranstransferase , Humanos , Pulmão , Camundongos , Complexos Multienzimáticos , Transdução de Sinais , Receptor 2 Toll-Like/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa