Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 424(1): 113474, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702193

RESUMO

Glioma is a common type of brain tumor with high incidence and mortality rates. Iron plays an important role in various physiological and pathological processes. Iron entry into the cell is promoted by binding the transferrin receptor 2 (TFR2) to the iron-transferrin complex. This study was designed to assess the association between TFR2 and ferroptosis in glioma. Lipid peroxidation levels in glioma cells were assessed by determination of lipid reactive oxygen species (ROS), glutathione content, and mitochondrial membrane potential. The effect of TFR2 on TMZ sensitivity was examined by cell viability assays, flow cytometry, and colony formation assays. We found that Low TFR2 expression predicted a better prognosis for glioma patients. And overexpression of TFR2 promoted the production of reactive oxygen species and lipid peroxidation in glioma cells, thereby further promoting ferroptosis. This could be reversed by the ferroptosis inhibitors Fer-1 and DFO (both inhibitors of ferroptosis). Moreover, TFR2 potentiated the cytotoxic effect of TMZ (temozolomide) via activating ferroptosis. In conclusion, we found that TFR2 induced ferroptosis and enhanced TMZ sensitivity in gliomas. Our findings might provide a new treatment strategy for glioma patients and improve their prognosis.


Assuntos
Ferroptose , Glioma , Humanos , Temozolomida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Ferro/metabolismo , Receptores da Transferrina/genética
2.
Biol Cybern ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922432

RESUMO

The coordination of complex behavior requires knowledge of both neural dynamics and the mechanics of the periphery. The feeding system of Aplysia californica is an excellent model for investigating questions in soft body systems' neuromechanics because of its experimental tractability. Prior work has attempted to elucidate the mechanical properties of the periphery by using a Hill-type muscle model to characterize the force generation capabilities of the key protractor muscle responsible for moving Aplysia's grasper anteriorly, the I2 muscle. However, the I1/I3 muscle, which is the main driver of retractions of Aplysia's grasper, has not been characterized. Because of the importance of the musculature's properties in generating functional behavior, understanding the properties of muscles like the I1/I3 complex may help to create more realistic simulations of the feeding behavior of Aplysia, which can aid in greater understanding of the neuromechanics of soft-bodied systems. To bridge this gap, in this work, the I1/I3 muscle complex was characterized using force-frequency, length-tension, and force-velocity experiments and showed that a Hill-type model can accurately predict its force-generation properties. Furthermore, the muscle's peak isometric force and stiffness were found to exceed those of the I2 muscle, and these results were analyzed in the context of prior studies on the I1/I3 complex's kinematics in vivo.

3.
Neuroimage ; 279: 120321, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574119

RESUMO

Accurate stroke assessment and consequent favorable clinical outcomes rely on the early identification and quantification of aneurysmal subarachnoid hemorrhage (aSAH) in non-contrast computed tomography (NCCT) images. However, hemorrhagic lesions can be complex and difficult to distinguish manually. To solve these problems, here we propose a novel Hybrid 2D/3D UNet deep-learning framework for automatic aSAH identification and quantification in NCCT images. We evaluated 1824 consecutive patients admitted with aSAH to four hospitals in China between June 2018 and May 2022. Accuracy and precision, Dice scores and intersection over union (IoU), and interclass correlation coefficients (ICC) were calculated to assess model performance, segmentation performance, and correlations between automatic and manual segmentation, respectively. A total of 1355 patients with aSAH were enrolled: 931, 101, 179, and 144 in four datasets, of whom 326 were scanned with Siemens, 640 with Philips, and 389 with GE Medical Systems scanners. Our proposed deep-learning method accurately identified (accuracies 0.993-0.999) and segmented (Dice scores 0.550-0.897) hemorrhage in both the internal and external datasets, even combinations of hemorrhage subtypes. We further developed a convenient AI-assisted platform based on our algorithm to assist clinical workflows, whose performance was comparable to manual measurements by experienced neurosurgeons (ICCs 0.815-0.957) but with greater efficiency and reduced cost. While this tool has not yet been prospectively tested in clinical practice, our innovative hybrid network algorithm and platform can accurately identify and quantify aSAH, paving the way for fast and cheap NCCT interpretation and a reliable AI-based approach to expedite clinical decision-making for aSAH patients.


Assuntos
Aprendizado Profundo , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste
4.
Mol Psychiatry ; 27(7): 3034-3046, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422468

RESUMO

Atherosclerosis (ATH) and Alzheimer's disease (AD) are both age-dependent inflammatory diseases, associated with infiltrated macrophages and vascular pathology and overlapping molecules. C/EBPß, an Aß or inflammatory cytokine-activated transcription factor, and AEP (asparagine endopeptidase) are intimately implicated in both ATH and AD; however, whether C/EBPß/AEP signaling couples ATH to AD pathogenesis remains incompletely understood. Here we show that C/EBPß/AEP pathway mediates ATH pathology and couples ATH to AD. Deletion of C/EBPß or AEP from primary macrophages diminishes cholesterol load, and inactivation of this pathway reduces foam cell formation and lesions in aorta in ApoE-/- mice, fed with HFD (high-fat-diet). Knockout of ApoE from 3xTg AD mouse model augments serum LDL and increases lesion areas in the aorta. Depletion of C/EBPß or AEP from 3xTg/ApoE-/- mice substantially attenuates these effects and elevates cerebral blood flow and vessel length, improving cognitive functions. Strikingly, knockdown of ApoE from the hippocampus of 3xTg mice decreases the cerebral blood flow and vessel length and aggravates AD pathologies, leading to cognitive deficits. Inactivation of C/EBPß/AEP pathway alleviates these events and restores cognitive functions. Hence, our findings demonstrate that C/EBPß/AEP signaling couples ATH to AD via mediating vascular pathology.


Assuntos
Doença de Alzheimer , Aterosclerose , Proteína beta Intensificadora de Ligação a CCAAT , Doença de Alzheimer/metabolismo , Animais , Aterosclerose/complicações , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Knockout para ApoE
5.
Exp Cell Res ; 417(2): 113231, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35659972

RESUMO

As in many other cancers, highly malignant proliferation and disordered cell division play irreplaceable roles in the exceedingly easy recurrence and complex progression of glioblastoma multiforme (GBM); however, mechanistic studies of the numerous regulators involved in this process are still insufficiently thorough. The role of BCAS3 has been studied in other cancers, but its role in GBM is unclear. Here, our goal was to investigate the expression pattern of BCAS3 in GBM and its potential mechanism of action. Using TCGA database and human GBM samples, we found that BCAS3 expression was up-regulated in GBM, and its high expression predicted poor prognosis. To further investigate the relationship between BCAS3 and GBM characteristics, we up-regulated and down-regulated BCAS3 expression in GBM to detect its effect on cell proliferation and cell cycle. At the same time, we established U87 cells stably overexpressing BCAS3 and generated an intracranial xenograft model to investigate the Potential role of BCAS3 in vivo. Finally, based on in vitro cell experiments and in vivo GBM xenograft models, we observed that BCAS3 significantly regulates GBM cell proliferation and cell cycle and that this regulation is associated with p53/GADD45α Signaling pathway. Taken together, our findings suggest that BCAS3 is inextricably linked to the progression of GBM and that targeting BCAS3 may have therapeutic effects in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Nanobiotechnology ; 21(1): 254, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542241

RESUMO

Lymph nodes targeted drug delivery is an attractive approach to improve cancer immunotherapy outcomes. Currently, the depth of understanding of afferent and efferent arms in brain immunity reveals the potential clinical applications of lymph node targeted drug delivery in brain tumors, e.g., glioblastoma. In this work, we systematically reviewed the microenvironment of glioblastoma and its structure as a basis for potential immunotherapy, including the glial-lymphatic pathway for substance exchange, the lymphatic drainage pathway from meningeal lymphatic vessels to deep cervical lymph nodes that communicate intra- and extracranial immunity, and the interaction between the blood-brain barrier and effector T cells. Furthermore, the carriers designed for lymph nodes targeted drug delivery were comprehensively summarized. The challenges and opportunities in developing a lymph nodes targeted delivery strategy for glioblastoma using nanotechnology are included at the end.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Linfonodos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Encéfalo , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
7.
Nanomedicine ; 50: 102684, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100267

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). The effect of chemotherapy of GBM is limited due to the existence of blood-brain barrier (BBB). The aim of this study is to develop self-assembled nanoparticles (NPs) of ursolic acid (UA) for GBM treatment. METHODS: UA NPs were synthesized by solvent volatilization method. Western blot analysis fluorescent staining and flow cytometry were launched to explore the anti-glioblastoma mechanism of UA NPs. The antitumor effects of UA NPs were further confirmed in vivo using intracranial xenograft models. RESULTS: UA were successfully prepared. In vitro, UA NPs could significantly increase the protein levels of cleaved-caspase 3 and LC3-II to strongly eliminate glioblastoma cells through autophagy and apoptosis. In the intracranial xenograft models, UA NPs could further effectively enter the BBB, and greatly improve the survival time of the mice. CONCLUSIONS: We successfully synthesized UA NPs which could effectively enter the BBB and show strong anti-tumor effect which may have great potential in the treatment of human glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Camundongos , Animais , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ácido Ursólico
8.
J Nanobiotechnology ; 20(1): 39, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062946

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). Due to the existence of blood-brain barrier (BBB), most therapeutics cannot efficiently reach tumors in the brain, and as a result, they are unable to be used for effective GBM treatment. Accumulating evidence shows that delivery of therapeutics in form of nanoparticles (NPs) may allow crossing the BBB for effective GBM treatment. METHODS: Betulinic acid NPs (BA NPs) were synthesized by the standard emulsion approach and characterized by electron microscopy and dynamic light scattering analysis. The resulting NPs were characterized for their anti-tumor effects by cell viability assay, EdU-DNA synthesis assay, cell cycle assay, mitochondrial membrane potential, and PI-FITC apoptosis assay. Further mechanistic studies were carried out through Western Blot and immunostaining analyses. Finally, we evaluated BA NPs in vivo for their pharmacokinetics and antitumor effects in intracranial xenograft GBM mouse models. RESULTS: BA NPs were successfully prepared and formed into rod shape. BA NPs could significantly suppress glioma cell proliferation, induce apoptosis, and arrest the cell cycle in the G0/G1 phase in vitro. Furthermore, BA NPs downregulated the Akt/NFκB-p65 signaling pathway in a concentration dependent manner. We found that the observed anti-tumor effect of BA NPs was dependent on the function of CB1/CB2 receptors. Moreover, in the intracranial GBM xenograft mouse models, BA NPs could effectively cross the BBB and greatly prolong the survival time of the mice. CONCLUSIONS: We successfully synthesized BA NPs, which could cross the BBB and demonstrated a strong anti-tumor effect. Therefore, BA NPs may potentially be used for effective treatment of GBM.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Nanopartículas/química , Triterpenos Pentacíclicos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Receptores de Canabinoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Betulínico
9.
Nanomedicine ; 44: 102581, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811067

RESUMO

Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.


Assuntos
Glioblastoma , Nanopartículas , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Esterases/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ácido Láctico , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Microambiente Tumoral
10.
J Cell Physiol ; 236(10): 6920-6931, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33792028

RESUMO

Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapy. Atorvastatin has been reported to alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH) via reducing reactive oxygen species, antiapoptosis, regulated autophagy, and neuroinflammation. Which was the related to the pyroptosis? Pyroptosis can be defined as a highly specific inflammatory programmed cell death, distinct from classical apoptosis and necrosis. However, the precise role of pyroptosis in atorvastatin-mediated neuroprotection following SAH has not been confirmed. The present study aimed to investigate the neuroprotection and potential molecular mechanisms of atorvastatin in the SAH-induced EBI via regulating neural pyroptosis using the filament perforation model of SAH in male C57BL/6 mice, and the hemin-induced neuron damage model in HT-22. Atorvastatin or vehicle was administrated 2 h after SAH and hemin-induced neuron damage. The mortality, neurological score, brain water content, and neuronal death were evaluated. The results show that the atorvastatin treatment markedly increased survival rate, neurological score, greater survival of neurons, downregulated the protein expression of NLRP1, cleaved caspase-1, interleukin-1ß (IL-1ß), and IL-18, which indicated that atorvastatin-inhibited pyroptosis and neuroinflammation, ameliorated neuron death in vivo/vitro subjected to SAH. Taken together, this study demonstrates that atorvastatin improved the neurological outcome in rats and reduced the neuron death by against neural pyroptosis and neuroinflammation.


Assuntos
Atorvastatina/farmacologia , Lesões Encefálicas/prevenção & controle , Encéfalo/efeitos dos fármacos , Encefalite/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piroptose/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Estudos de Casos e Controles , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/metabolismo , Encefalite/patologia , Hemina/toxicidade , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia
11.
BMC Cancer ; 21(1): 825, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271858

RESUMO

BACKGROUND: The prognosis of lung cancer with synchronous brain metastasis (LCBM) is very poor, and patients often die within a short time. However, little is known about the early mortality and related factors in patients with LCBM. METHODS: Patients diagnosed with LCBM between 2010 and 2016 were enrolled from the Surveillance, Epidemiology, and End Result (SEER) database. Univariate and multivariate logistic regression analysis were used to identify significant independent prognostic factors, which were used to construct nomograms of overall and cancer-specific early death. Then, the prediction ability of the model was verified by receiver operating characteristic (ROC) curve. At last, the clinical application value of the model was tested through decision curve analysis (DCA). RESULTS: A total of 29,902 patients with LCBM were enrolled in this study. Among them, 13,275 (44.4%) patients had early death, and 11,425 (38.2%) cases died of lung cancer. The significant independent risk factors for overall and cancer-specific early death included age, race, gender, Gleason grade, histological type, T stage, N stage, bone metastasis, liver metastasis and marital status, which were used to construct the nomogram. The ROC curve demonstrated good predictive ability and clinical application value. The areas under the curve (AUC) of the training group was 0.793 (95% CI: 0.788-0.799) and 0.794 (95% CI: 0.788-0.799), in the model of overall and cancer-specific early death respectively. And the AUC of the validation group were 0.803 (95% CI: 0.788-0.818) and 0.806 (95% CI: 0.791-0.821), respectively. The calibration plots of the model showed that the predicted early death is consistent with the actual value. The DCA analysis indicated a good clinical application value of this model. CONCLUSIONS: We established a comprehensive nomogram to predict early death in lung cancer patients with synchronous brain metastases. Nomograms may help oncologists develop better treatment strategies, such as clinical trials and hospice care.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/complicações , Nomogramas , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Humanos , Incidência , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Programa de SEER , Análise de Sobrevida
12.
BMC Cancer ; 21(1): 251, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750353

RESUMO

BACKGROUND: To accurately predict the prognosis of glioma patients. METHODS: A total of 541 samples from the TCGA cohort, 181 observations from the CGGA database and 91 samples from our cohort were included in our study. Long non-coding RNAs (LncRNAs) associated with glioma WHO grade were evaluated by weighted gene co-expression network analysis (WGCNA). Five lncRNA features were selected out to construct prognostic signatures based on the Cox regression model. RESULTS: By weighted gene co-expression network analysis (WGCNA), 14 lncRNAs related to glioma grade were identified. Using univariate and multivariate Cox analysis, five lncRNAs (CYTOR, MIR155HG, LINC00641, AC120036.4 and PWAR6) were selected to develop the prognostic signature. The Kaplan-Meier curve depicted that the patients in high risk group had poor prognosis in all cohorts. The areas under the receiver operating characteristic curve of the signature in predicting the survival of glioma patients at 1, 3, and 5 years were 0.84, 0.92, 0.90 in the CGGA cohort; 0.8, 0.85 and 0.77 in the TCGA set and 0.72, 0.90 and 0.86 in our own cohort. Multivariate Cox analysis demonstrated that the five-lncRNA signature was an independent prognostic indicator in the three sets (CGGA set: HR = 2.002, p < 0.001; TCGA set: HR = 1.243, p = 0.007; Our cohort: HR = 4.457, p = 0.008, respectively). A nomogram including the lncRNAs signature and clinical covariates was constructed and demonstrated high predictive accuracy in predicting 1-, 3- and 5-year survival probability of glioma patients. CONCLUSION: We established a five-lncRNA signature as a potentially reliable tool for survival prediction of glioma patients.


Assuntos
Neoplasias Encefálicas/mortalidade , Biologia Computacional/métodos , Glioma/mortalidade , RNA Longo não Codificante/análise , Neoplasias Encefálicas/genética , Redes Reguladoras de Genes , Glioma/genética , Humanos , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais
13.
Adv Funct Mater ; 30(14)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32440263

RESUMO

Breast cancer brain metastases (BCBMs) represent a major cause of morbidity and mortality among patients with breast cancer. Chemotherapy, which is widely used to treat tumors outside of the brain, is often ineffective on BCBMs due to its inability to efficiently cross the blood-brain barrier (BBB). Although the BBB is partially disrupted in tumor lesions, it remains intact enough to prevent most therapeutics from entering the brain. Here, we report a nanotechnology approach that can overcome the BBB through synthesis of lexiscan-loaded, AMD3100-conjugated, shrinkable NPs, or LANPs. LANPs respond to neutrophil elastase-enriched tumor microenvironment by shrinking in size and disrupt the BBB in tumors through lexiscan-mediated modulation. LANPs recognize tumor cells through the interaction between AMD3100 and CXCR4, which are expressed in metastatic tumor cells. We demonstrate that the integration of tumor responsiveness, tumor targeting, and BBB penetration enables LANPs to penetrate metastatic lesions in the brain with high efficiency, and, when doxorubicin was encapsulated, LANPs effectively inhibited tumor growth and prolonged the survival of tumor-bearing mice. Due to their high efficiency in penetrating the BBB for BCBMs treatment, LANPs have the potential to be translated into clinical applications for improved treatment of patients with BCBMs.

14.
Med Sci Monit ; 26: e924054, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843610

RESUMO

BACKGROUND Gliomas are the most common primary tumors of the brain and spinal cord. The tumor microenvironment (TME) is the cellular environment in which tumors exist. This study aimed to identify the role of the TME and the effects of genes involved in the TME of malignant glioma. MATERIAL AND METHODS The ESTIMATE algorithms in the R package were used to calculate the immune and stromal scores of samples in the TCGA and GSE4290 datasets. The associations of stromal and immune scores with clinicopathological characteristics and overall survival of malignant glioma patients were assessed by analysis of variance and Kaplan-Meier analysis. Differentially expressed genes (DEGs) were obtained through the median immune and stromal score using the R package "limma". Functional enrichment analysis and the PPI network MCODE were used to analyze DEGs. RESULTS Increased immune and stromal scores were closely related with advanced glioma grade and poor prognosis (all P<0.01). In total, 558 DEGs were found and most were related to tumor prognosis. Functional enrichment analysis showed that DEGs were associated with cell-matrix regulation and immune response. Four hub modules related to tumor angiogenesis, collagen formation, and immune response were found and analyzed. Previously overlooked microenvironment-related genes such as LAMB1, FN1, ACTN1, TRIM, SERPINH1, CYBA, LAIR1, and LILRB2 showed prognostic values in malignant glioma patients. CONCLUSIONS The glioma stromal/immune scores are closely related to glioma grade, histology, and survival time. Some glioma microenvironment-related genes including LAMB1, FN1, ACTN1, TRIM6, SERPINH1, CYBA, LAIR1, and LILRB2 show prognostic values in malignant gliomas and serve as potential biomarkers.


Assuntos
Neoplasias Encefálicas/genética , Biologia Computacional , Glioma/genética , Microambiente Tumoral , Algoritmos , Biomarcadores Tumorais/genética , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica/métodos , Humanos , Prognóstico
15.
J Stroke Cerebrovasc Dis ; 29(12): 105388, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096495

RESUMO

OBJECTIVE: To investigate the safety and efficacy of embolization with stent-assisted technique for wide-necked extremely small intracranial aneurysms (ESIAs) with diameter no more than 2 mm. METHODS: From May 2015 through January 2019, 20 wide-necked ESIAs in 19 patients (6 males and 13 females, aged from 38 to 72 years old, average 59 years old) were embolized with stent-assisted technique. All these patients had a total of 29 aneurysms, 7 patients had multiple aneurysms and 1 patient had 2 ESIAs. 12 patients (63.2%) presented with subarachnoid hemorrhage (SAH), 9 of them have a culprit ESIA. The angiographic results before and after operation, procedural complications, and clinical condition with Hunt and Hess grade (H-H) and Fisher grade, as well as Glasgow outcome scale (GOS) at discharge were assessed. Follow-up results were evaluated by computer tomograph angiography (CTA) or digital subtract angiography (DSA). RESULTS: The mean diameter of aneurysm neck was 1.68 ± 0.21 mm. Complete occlusion with Raymond grade I was achieved in 18 aneurysms (90.9%), 2 aneurysms were subtotal embolization with Raymond grade II (9.1%). All patients were treated with coil embolization with stent-assist technique successfully and all the stents were placed accurately and function well during the procedure. There is no rupture of aneurysm during operation, no coil protrusion to the distal blood vessel, and no cerebral infarction as well. When discharged, all patients recovered well. The follow-up results showed that only one patients with recurrence of aneurysm 27 months after embolization. CONCLUSION: Embolization with stent-assisted technique for wide-necked ESIAs is safe and effective. However, the follow-up is not long enough in our study and a larger sample size are needed to obtain the long-term efficacy.


Assuntos
Aneurisma Roto/terapia , Embolização Terapêutica/instrumentação , Procedimentos Endovasculares/instrumentação , Aneurisma Intracraniano/terapia , Stents , Hemorragia Subaracnóidea/terapia , Adulto , Idoso , Aneurisma Roto/diagnóstico por imagem , Embolização Terapêutica/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Hemorragia Subaracnóidea/diagnóstico por imagem , Fatores de Tempo , Resultado do Tratamento
16.
Chin J Traumatol ; 22(6): 333-339, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31753760

RESUMO

PURPOSE: Thalamic hemorrhage breaking into ventricles (THBIV) is a devastating disease with high morbidity and mortality rates. Endoscopic surgery (ES) may improve outcomes, although there is no consensus on its superiority. We investigated the efficacy and safety of ES and compared the outcomes of different management strategies by ES, hematoma puncture and drainage (HPD), and external ventricular drainage (EVD) in patients with THBIV. METHODS: We retrospectively analyzed patients with THBIV treated by ES, HPD, or EVD at our hospital from June 2015 to June 2018. Patients were categorized into anteromedial and posterolateral groups based on THBIV location, and then the two groups were further divided into ES, HPD, and EVD subgroups. Individualized surgical approach was adopted according to the location of the hematoma in the ES subgroups. Patient characteristics and surgical outcomes were investigated. RESULTS: We analyzed 211 consecutive patients. There were no significant differences in clinical characteristics or incidence of perioperative procedure-related complications (postoperative rebleeding and intracranial infection) in either anteromedial or posterolateral groups. Compared with other therapeutic methods, the ES subgroups had the highest hematoma evacuation rate, shortest drainage time, and lowest incidence of chronic ventricular dilatation (all p < 0.05). Among the three anteromedial subgroups, ES subgroup had the best clinical outcomes which was assessed by the modified Rankin Scale, followed by HPD and EVD subgroups (p < 0.01); while in the posterolateral subgroups, clinical outcomes in the ES and HPD subgroups were similar and better than that in the EVD subgroup (p = 0.037). CONCLUSION: Individualized surgical ES approach for removal of thalamic and ventricular hematomas is a minimally invasive, safe, and effective strategy for the treatment of THBIV with a thalamic hematoma volume of 10-30 mL.


Assuntos
Hemorragia Cerebral/cirurgia , Ventrículos Cerebrais/cirurgia , Endoscopia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Paracentese/métodos , Tálamo/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Biochem Biophys Res Commun ; 504(1): 46-53, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30172378

RESUMO

BACKGROUND: To investigate the effects and underlying molecular mechanisms of FoxG1 expression on glioblastoma multiforme (GBM) models. METHODS: Expression levels of FoxG1 and other cancer-related biomarkers were evaluated by qRT-PCR, immunoblotting and immunohistochemistry. Crystal violet staining and MTT assay and were applied in this study to verify cell proliferation ability and viability of GBM cell models with/without drug treatment. RESULTS: Immunohistochemical and qRT-PCR assays showed that endogenous FoxG1 expression levels were positively correlated to the GBM disease progression. Overexpression of FoxG1 protein resulted in increased cell viability, G2/M cell cycle arrest, as well as the downregulation of p21 and cyclin B1. In addition, western blot assays reported that enforced expression of FoxG1 suppressed GAPF and facilitated the expression of Sox2 and Sox5. Meanwhile the downstream targets of FoxG1, such as FoxO1 and pSmad1/5/8 were activated. Overexpression of FoxG1 under TMZ treatment restored the cell viability as well as the expression levels of Sox2 and Sox5, yet downregulated expression levels of p21 and cyclin B1. The downstream FoxG1-induced FoxO/Smad signaling was re-inhibited under TMZ treatments. CONCLUSIONS: Our findings suggest that FoxG1 functions as an onco-factor by promoting proliferation, as well as inhibiting differential responses in glioblastoma by downregulating FoxO/Smad signaling.


Assuntos
Neoplasias Encefálicas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glioblastoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Proteína Forkhead Box O1/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Glioblastoma/patologia , Humanos , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Proteínas Smad/antagonistas & inibidores , Temozolomida/farmacologia
18.
Biochem Biophys Res Commun ; 499(2): 112-119, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29470982

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and mortality in young adults worldwide. The pathophysiology is not fully understood. Programmed necrosis (necroptosis) is a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Receptor-interacting protein 3 (RIP3) plays an important role in programmed necrosis. However, the effect of RIP3-related pathway in TBI is little to be known. We attempted to explore the significance of RIP3 in regulating TBI in vivo. Significantly, TBI induced over-expression of RIP3 in the hippocampus of mice, as well as RIP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL). Mice after TBI exhibited cognitive dysfunction and activation of glia cells, which were significantly attenuated by RIP3-knockout (KO). Moreover, inflammation and oxidative stress in hippocampus were markedly induced by TBI in wild type (WT) mice. Of note, the reduction of pro-inflammatory cytokines and oxidants was observed in RIP3-deficient mice, which was linked to the blockage of NLR pyrin domain containing 3 (NLRP3)/apoptosis-associated speck-like protein containing a CARD (ASC)/Caspase-1 and kelch-like ECH-associated protein 1 (Keap 1) pathways. Further, TBI induced hippocampus apoptosis, evidenced by the increase of cleaved Caspase-8/-3 and poly (ADP)-ribose polymerase (PARP) in WT mice, whereas being decreased by RIP3-knockout. In addition, RIP3 knockout led to phosphorylation of AMP-activated protein kinase α (AMPKα) in hippocampus of mice after TBI. And of note, the in vitro findings indicated that RIP3-ablation attenuated oxidative stress, inflammation and apoptosis in astrocytes, which was dependent on AMPKα activation. Together, suppressing RIP3 might be served as a therapeutic target against brain injury through inhibiting inflammation, oxidative stress and apoptosis.


Assuntos
Adenilato Quinase/metabolismo , Apoptose , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/prevenção & controle , Inflamação/patologia , Estresse Oxidativo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Cognição , Constrição Patológica , Deleção de Genes , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
J Intensive Care Med ; 33(12): 663-670, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040989

RESUMO

INTRODUCTION:: The role of N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with hypertensive intracerebral hemorrhage (HICH) is poorly understood. This study aimed to investigate the secretion pattern of NT-proBNP in patients with HICH and to assess its relationship with hematoma size, hyponatremia, and intracranial pressure (ICP). METHODS:: This prospective study enrolled 147 isolated patients with HICH. Blood samples were obtained from each patient, and values of serum NT-proBNP, hematoma size, blood sodium, and ICP were collected for each patient. RESULTS:: The peak-to-mean concentration of NT-proBNP was 666.8 ± 355.1 pg/mL observed on day 4. The NT-proBNP levels in patients with hematoma volume >30 mL were significantly higher than those in patients with hematoma volume <30 mL ( P < .05). In patients with severe HICH, the mean concentration of NT-proBNP was statistically higher than that in patients with mild-moderate HICH ( P < .05), and the mean level of NT-proBNP in hyponatremia group was significantly higher than that in normonatremic group ( P < .05). In addition, the linear regression analysis indicated that serum NT-proBNP concentrations were positively correlated with ICP ( r = .703, P < .05) but negatively with blood sodium levels only in patients with severe HICH ( r = -.704, P < .05). The serum NT-proBNP levels on day 4 after admission were positively correlated with hematoma size ( r = .702, P < .05). CONCLUSION:: The NT-proBNP concentrations were elevated progressively and markedly at least in the first 4 days after HICH and reached a peak level on the fourth day. The NT-proBNP levels on day 4 were positively correlated with hematoma size. There was a notable positive correlation between plasma NT-proBNP levels and ICP in patients with severe HICH. Furthermore, only in patients with severe HICH, the plasma NT-proBNP levels presented a significant correlation with hyponatremia, which did not occur in patients with mild-moderate HICH.


Assuntos
Hematoma/patologia , Hiponatremia/fisiopatologia , Hemorragia Intracraniana Hipertensiva/sangue , Hemorragia Intracraniana Hipertensiva/fisiopatologia , Pressão Intracraniana/fisiologia , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Idoso , Feminino , Hematoma/fisiopatologia , Humanos , Hiponatremia/etiologia , Hemorragia Intracraniana Hipertensiva/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Via Secretória
20.
Int J Med Sci ; 14(4): 333-339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553165

RESUMO

Stroke remains the leading cause of death and disability worldwide. This fact highlights the need to search for potential drug targets that can reduce stroke-related brain damage. We showed recently that a glycogen synthase kinase-3ß (GSK-3ß) inhibitor attenuates tissue plasminogen activator-induced hemorrhagic transformation after permanent focal cerebral ischemia. Here, we examined whether GSK-3ß inhibition mitigates early ischemia-reperfusion stroke injury and investigated its potential mechanism of action. We used the rat middle cerebral artery occlusion (MCAO) model to mimic transient cerebral ischemia. At 3.5 h after MCAO, cerebral blood flow was restored, and rats were administered DMSO (vehicle, 1% in saline) or GSK-3ß inhibitor TWS119 (30 mg/kg) by intraperitoneal injection. Animals were sacrificed 24 h after MCAO. TWS119 treatment reduced neurologic deficits, brain edema, infarct volume, and blood-brain barrier permeability compared with those in the vehicle group. TWS119 treatment also increased the protein expression of ß-catenin and zonula occludens-1 but decreased ß-catenin phosphorylation while suppressing the expression of GSK-3ß. These results indicate that GSK-3ß inhibition protects the blood-brain barrier and attenuates early ischemia-reperfusion stroke injury. This protection may be related to early activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Ataque Isquêmico Transitório/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , beta Catenina/genética , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/fisiopatologia , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/fisiopatologia , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Ratos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia , Via de Sinalização Wnt/genética , Proteína da Zônula de Oclusão-1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa