Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008083

RESUMO

Status epilepticus may cause molecular and cellular events, leading to hippocampal neuronal cell death. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is an important regulator of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2), also known as fetal liver kinase receptor 1 (Flk-1). Resveratrol is an activator of PGC-1α. It has been suggested to provide neuroprotective effects in epilepsy, stroke, and neurodegenerative diseases. In the present study, we used microinjection of kainic acid into the left hippocampal CA3 region in Sprague Dawley rats to induce bilateral prolonged seizure activity. Upregulating the PGC-1α pathway will increase VEGF/VEGFR2 (Flk-1) signaling and further activate some survival signaling that includes the mitogen activated protein kinase kinase (MEK)/mitogen activated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways and offer neuroprotection as a consequence of apoptosis in the hippocampal neurons following status epilepticus. Otherwise, downregulation of PGC-1α by siRNA against pgc-1α will inhibit VEGF/VEGFR2 (Flk-1) signaling and suppress pro-survival PI3K/AKT and MEK/ERK pathways that are also accompanied by hippocampal CA3 neuronal cell apoptosis. These results may indicate that the PGC-1α induced VEGF/VEGFR2 pathway may trigger the neuronal survival signaling, and the PI3K/AKT and MEK/ERK signaling pathways. Thus, the axis of PGC-1α/VEGF/VEGFR2 (Flk-1) and the triggering of downstream PI3K/AKT and MEK/ERK signaling could be considered an endogenous neuroprotective effect against apoptosis in the hippocampus following status epilepticus.


Assuntos
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Estado Epiléptico/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Morte Celular/genética , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Neurônios/metabolismo , Neurônios/patologia , PPAR gama/genética , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Estado Epiléptico/patologia
2.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340436

RESUMO

Status epilepticus may decrease mitochondrial biogenesis, resulting in neuronal cell death occurring in the hippocampus. Sirtuin 1 (SIRT1) functionally interacts with peroxisome proliferator-activated receptors and γ coactivator 1α (PGC-1α), which play a crucial role in the regulation of mitochondrial biogenesis. In Sprague-Dawley rats, kainic acid was microinjected unilaterally into the hippocampal CA3 subfield to induce bilateral seizure activity. SIRT1, PGC-1α, and other key proteins involving mitochondrial biogenesis and the amount of mitochondrial DNA were investigated. SIRT1 antisense oligodeoxynucleotide was used to evaluate the relationship between SIRT1 and mitochondrial biogenesis, as well as the mitochondrial function, oxidative stress, and neuronal cell survival. Increased SIRT1, PGC-1α, and mitochondrial biogenesis machinery were found in the hippocampus following experimental status epilepticus. Downregulation of SIRT1 decreased PGC-1α expression and mitochondrial biogenesis machinery, increased Complex I dysfunction, augmented the level of oxidized proteins, raised activated caspase-3 expression, and promoted neuronal cell damage in the hippocampus. The results suggest that the SIRT1 signaling pathway may play a pivotal role in mitochondrial biogenesis, and could be considered an endogenous neuroprotective mechanism counteracting seizure-induced neuronal cell damage following status epilepticus.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética , Estado Epiléptico/genética , Animais , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Injeções Intraventriculares , Ácido Caínico/administração & dosagem , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Biogênese de Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Técnicas Estereotáxicas
3.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731450

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, mainly affecting the elderly. The disease progresses gradually, with core motor presentations and a multitude of non-motor manifestations. There are two neuropathological hallmarks of PD, the dopaminergic neuronal loss and the alpha-synuclein-containing Lewy body inclusions in the substantia nigra. While the exact pathomechanisms of PD remain unclear, genetic investigations have revealed evidence of the involvement of mitochondrial function, alpha-synuclein (α-syn) aggregation, and the endo-lysosomal system, in disease pathogenesis. Due to the high energy demand of dopaminergic neurons, mitochondria are of special importance acting as the cellular powerhouse. Mitochondrial dynamic fusion and fission, and autophagy quality control keep the mitochondrial network in a healthy state. Should defects of the organelle occur, a variety of reactions would ensue at the cellular level, including disrupted mitochondrial respiratory network and perturbed calcium homeostasis, possibly resulting in cellular death. Meanwhile, α-syn is a presynaptic protein that helps regulate synaptic vesicle transportation and endocytosis. Its misfolding into oligomeric sheets and fibrillation is toxic to the mitochondria and neurons. Increased cellular oxidative stress leads to α-syn accumulation, causing mitochondrial dysfunction. The proteasome and endo-lysosomal systems function to regulate damage and unwanted waste management within the cell while facilitating the quality control of mitochondria and α-syn. This review will analyze the biological functions and interactions between mitochondria, α-syn, and the endo-lysosomal system in the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Transporte Biológico Ativo/genética , Neurônios Dopaminérgicos/patologia , Transporte de Elétrons/genética , Endossomos/genética , Endossomos/patologia , Humanos , Lisossomos/genética , Lisossomos/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , alfa-Sinucleína/genética
4.
Int J Mol Sci ; 20(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823590

RESUMO

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known to regulate mitochondrial biogenesis. Resveratrol is present in a variety of plants, including the skin of grapes, blueberries, raspberries, mulberries, and peanuts. It has been shown to offer protective effects against a number of cardiovascular and neurodegenerative diseases, stroke, and epilepsy. This study examined the neuroprotective effect of resveratrol on mitochondrial biogenesis in the hippocampus following experimental status epilepticus. Kainic acid was microinjected into left hippocampal CA3 in Sprague Dawley rats to induce bilateral prolonged seizure activity. PGC-1α expression and related mitochondrial biogenesis were investigated. Amounts of nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), cytochrome c oxidase 1 (COX1), and mitochondrial DNA (mtDNA) were measured to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis machinery after prolonged seizure were found in CA3. Resveratrol increased expression of PGC-1α, NRF1, and Tfam, NRF1 binding activity, COX1 level, and mtDNA amount. In addition, resveratrol reduced activated caspase-3 activity and attenuated neuronal cell damage in the hippocampus following status epilepticus. These results suggest that resveratrol plays a pivotal role in the mitochondrial biogenesis machinery that may provide a protective mechanism counteracting seizure-induced neuronal damage by activation of the PGC-1α signaling pathway.


Assuntos
Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Resveratrol/farmacologia , Estado Epiléptico/patologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Mitocôndrias/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115884

RESUMO

Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.


Assuntos
Proteínas Hedgehog/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurogênese , Adulto , Animais , Antioxidantes/metabolismo , Autofagia , Humanos , Transdução de Sinais
6.
J Neurochem ; 140(6): 845-861, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027414

RESUMO

Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition.


Assuntos
Autofagia/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neuroproteção/fisiologia , Proteína Sequestossoma-1/fisiologia , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Nitrocompostos/toxicidade , Gravidez , Propionatos/toxicidade , Ratos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 18(9)2017 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28846606

RESUMO

Glucagon-like peptide-1 (GLP-1) is originally found as a metabolic hormone (incretin) that is able to regulate blood-glucose levels via promoting synthesis and secretion of insulin. GLP-1 and many analogues are approved for treatment of type II diabetes. Accumulating results imply that GLP-1 performs multiple functions in various tissues and organs beyond regulation of blood-glucose. The neuroprotective function of GLP-1 has been extensively explored during the past two decades. Three of our previous studies have shown that apurinic/apyrimidinic endonuclease 1 (APE1) is the only protein of the base excision repair (BER) pathway able to be regulated by oxidative stress or exogenous stimulations in rat primary cortical neurons. In this article, we review the role of APE1 in neurodegenerative diseases and its relationship to neuroprotective mechanisms of the activated GLP-1 receptor (GLP-1R) in neurodegenerative disorders. The purpose of this article is to provide new insight, from the aspect of DNA damage and repair, for studying potential treatments in neurodegenerative diseases.


Assuntos
Reparo do DNA , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Doenças Neurodegenerativas/genética
8.
Int J Mol Sci ; 18(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273832

RESUMO

In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.


Assuntos
Apoptose , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/farmacologia , Nitrocompostos/toxicidade , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Propionatos/farmacologia , Propionatos/toxicidade , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 18(6)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590414

RESUMO

Mitochondria consume O2 to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ°) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.


Assuntos
DNA Mitocondrial/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores , Hipóxia Celular/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Dinaminas , Metabolismo Energético/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dosagem de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Interferência de RNA
10.
Biochim Biophys Acta ; 1853(10 Pt A): 2306-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25986861

RESUMO

Oncostatin M (OSM), a cytokine in the interleukin-6 (IL-6) family, has been proposed to play a protective role in the central nervous system, such as attenuation of excitotoxicity induced by N-methyl-D-aspartate (NMDA) and glutamate. However, the potential neuroprotective effects of OSM against mitochondrial dysfunction have never been reported. In the present study, we tested the hypothesis that OSM may confer neuronal resistance against 3-nitropropionic acid (3-NP), a plant toxin that irreversibly inhibits the complex II of the mitochondrial electron transport chain, and characterized the underlying molecular mechanisms. We found that OSM preconditioning dose- and time-dependently protected cortical neurons against 3-NP toxicity. OSM stimulated expression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 family member expressed in differentiating myeloid cells, that required prior phosphorylation of Janus kinase-1 (JAK1), JAK2, extracellular signal-regulated kinase-1/2 (ERK1/2), signal transducer and activator of transcription-3 (STAT3), STAT1, and cAMP-response element-binding protein (CREB). Pharmacological inhibitors of JAK1, JAK2, ERK1/2, STAT3, STAT1, and CREB as well as the siRNA targeting at STAT3 and Mcl-1 all abolished OSM-dependent 3-NP resistance. Finally, OSM-dependent Mcl-1 induction contributed to the enhancements of mitochondrial bioenergetics including increases in spare respiratory capacity and ATP production. In conclusion, our findings indicated that OSM induces Mcl-1 expression via activation of ERK1/2, JAK1/2, STAT1/3, and CREB; furthermore, OSM-mediated Mcl-1 induction contributes to bioenergetic improvements and neuroprotective effects against 3-NP toxicity in cortical neurons. OSM may thus serve as a novel neuroprotective agent against mitochondrial dysfunction commonly associated with pathogenic mechanisms underlying neurodegeneration.


Assuntos
Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neurônios/metabolismo , Oncostatina M/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Córtex Cerebral/citologia , Metabolismo Energético/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neurônios/citologia , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia , Propionatos/efeitos adversos , Propionatos/farmacologia , Ratos
11.
Biochem Biophys Res Commun ; 473(4): 1026-1032, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27067050

RESUMO

Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases.


Assuntos
Interleucina-33/biossíntese , Rim/metabolismo , Rim/patologia , Animais , Proliferação de Células , Fibrose , Regulação da Expressão Gênica , Proteína 1 Semelhante a Receptor de Interleucina-1/biossíntese , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Rim/lesões , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Regulação para Cima , Obstrução Ureteral/complicações
12.
J Biomed Sci ; 23(1): 44, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175924

RESUMO

BACKGROUND: Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein that, upon phosphorylation at serine 616 (p-Drp1(Ser616)), plays a pivotal role in neuronal death after ischemia. In the present study, we hypothesized that peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent pathway can reduce the expression of p-Drp1(Ser616) and ameliorate hippocampal injury induced by global ischemia in rats. RESULTS: We found that pretreatment of the rats with Mdivi-1, a selective Drp1 inhibitor, decreased the level of transient global ischemia (TGI)-induced p-Drp1(Ser616) and reduced cellular contents of oxidized proteins, activated caspase-3 expression as well as the extent of DNA fragmentation. Delivery of siRNA against Drp1 attenuated the expression of p-Drp1(Ser616) that was accompanied by alleviation of the TGI-induced protein oxidation, activated caspase-3 expression and DNA fragmentation in hippocampal proteins. Exogenous application of pioglitazone, a PPARγ agonist, reduced the p-Drp1(Ser616) expression, decreased TGI-induced oxidative stress and activated caspase-3 expression, lessened the extents of DNA fragmentation, and diminished the numbers of TUNEL-positive neuronal cells; all of these effects were reversed by GW9662, a PPARγ antagonist. CONCLUSIONS: Our findings thus indicated that inhibition of TGI-induced p-Drp1(Ser616) expression by Drp1 inhibitor and Drp1-siRNA can decrease protein oxidation, activated caspase-3 expression and neuronal damage in the hippocampal CA1 subfield. PPARγ agonist, through PPARγ-dependent mechanism and via decreasing p-Drp1(Ser616) expression, can exert anti-oxidative and anti-apoptotic effects against ischemic neuronal injury.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/lesões , Região CA1 Hipocampal/metabolismo , Dinaminas/biossíntese , PPAR gama/metabolismo , Transdução de Sinais , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Dinaminas/genética , Masculino , Fosforilação/efeitos dos fármacos , Quinazolinonas/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Biochem Biophys Res Commun ; 460(2): 397-403, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25791474

RESUMO

Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616.


Assuntos
Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Neurônios/patologia , Proteínas Quinases/metabolismo , Animais , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
14.
Int J Mol Sci ; 16(11): 26406-16, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556340

RESUMO

Recent studies suggested that sestrin2 is a crucial modulator for the production of reactive oxygen species (ROS). In addition, sestrin2 may also regulate ribosomal protein S6 (RpS6), a molecule important for protein synthesis, through the effect of mammalian target of rapamycin (mTOR) complex that is pivotal for longevity. However, the roles of sestrin2 in cerebral ischemia, in which oxidative stress is one of the major pathogenic mechanisms, are still less understood. In this study, we hypothesized that sestrin2 may protect hippocampal CA1 neurons against transient global ischemia (TGI)-induced apoptosis by regulating RpS6 phosphorylation in rats. We found that sestrin2 expression was progressively increased in the hippocampal CA1 subfield 1-48 h after TGI, reaching the maximal level at 24 h, and declined thereafter. Further, an increased extent of RpS6 phosphorylation, but not total RpS6 protein level, was observed in the hippocampal CA1 subfield after TGI. The sestrin2 siRNA, which substantially blocked the expression of TGI-induced sestrin2, also abolished RpS6 phosphorylation. TGI with reperfusion may induce oxidative stress with the resultant formation of 8-hydroxy-deoxyguanosine (8-OHdG). We found that sestrin2 siRNA further augmented the formation of 8-OHdG induced by TGI with reperfusion for 4 h. Consistently, sestrin2 siRNA also enhanced apoptosis induced by TGI with reperfusion for 48 h based on the analysis of DNA fragmentation by agarose gel electrophoresis, DNA fragmentation sandwich ELISA, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Together these findings indicated that TGI-induced sestrin2 expression contributed to RpS6 phosphorylation and neuroprotection against ischemic injury in the hippocampal CA1 subfield.


Assuntos
Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Proteínas Nucleares/metabolismo , Células Piramidais/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Expressão Gênica , Inativação Gênica , Ataque Isquêmico Transitório/genética , Masculino , Proteínas Nucleares/genética , Estresse Oxidativo , Células Piramidais/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteína S6 Ribossômica/genética
15.
Neurobiol Dis ; 62: 241-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141017

RESUMO

Status epilepticus induces subcellular changes that may eventually lead to neuronal cell death in the hippocampus. Based on an animal model of status epilepticus, our laboratory showed previously that sustained hippocampal seizure activity activates nuclear factor-κB (NF-κB) and upregulates nitric oxide synthase (NOS) II gene expression, leading to apoptotic neuronal cell death in the hippocampus. The present study examined the potential modulatory role of heat shock protein 70 (HSP70) on NF-κB signaling in the hippocampus following experimental status epilepticus. In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Expression of HSP70 was elevated as early as 1h after the elicitation of sustained seizure activity, followed by a progressive elevation that peaked at 24h. Pretreatment with an antisense oligonucleotide against hsp70 decreased the HSP70 expression, and significantly augmented IκB kinase (IKK) activity and phosphorylation of IκBα, alongside enhanced nuclear translocation and DNA binding activity of NF-κB in the hippocampal CA3 neurons and glial cells. These cellular events were followed by enhanced upregulation of NOS II and peroxynitrite expression 3h after sustained seizure activity that led to an increase of caspase-3 and DNA fragmentation in the hippocampal CA3 neurons 7days after experimental status epilepticus. We concluded that HSP70 protects against apoptotic cell death induced by NF-κB activation and NOS II-peroxynitrite signaling cascade in the hippocampal CA3 and glial cells following experimental status epilepticus via suppression of IKK activity and deactivation of IκBα.


Assuntos
Região CA3 Hipocampal/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estado Epiléptico/metabolismo , Animais , Região CA3 Hipocampal/patologia , Morte Celular , Ácido Caínico/toxicidade , Masculino , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/enzimologia , Estado Epiléptico/patologia
16.
Int J Mol Sci ; 15(1): 1625-46, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451142

RESUMO

Parkinson disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons. Mitochondrial dysfunction, oxidative stress or protein misfolding and aggregation may underlie this process. Autophagy is an intracellular catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. Autophagic dysfunction may hasten the progression of neuronal degeneration. In this study, resveratrol promoted autophagic flux and protected dopaminergic neurons against rotenone-induced apoptosis. In an in vivo PD model, rotenone induced loss of dopaminergic neurons, increased oxidation of mitochondrial proteins and promoted autophagic vesicle development in brain tissue. The natural phytoalexin resveratrol prevented rotenone-induced neuronal apoptosis in vitro, and this pro-survival effect was abolished by an autophagic inhibitor. Although both rotenone and resveratrol promoted LC3-II accumulation, autophagic flux was inhibited by rotenone and augmented by resveratrol. Further, rotenone reduced heme oxygenase-1 (HO-1) expression, whereas resveratrol increased HO-1 expression. Pharmacological inhibition of HO-1 abolished resveratrol-mediated autophagy and neuroprotection. Notably, the effects of a pharmacological inducer of HO-1 were similar to those of resveratrol, and protected against rotenone-induced cell death in an autophagy-dependent manner, validating the hypothesis of HO-1 dependent autophagy in preventing neuronal death in the in vitro PD model. Collectively, our findings suggest that resveratrol induces HO-1 expression and prevents dopaminergic cell death by regulating autophagic flux; thus protecting against rotenone-induced neuronal apoptosis.


Assuntos
Apoptose , Autofagia , Neurônios Dopaminérgicos/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Heme Oxigenase-1/genética , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Endogâmicos Lew , Resveratrol , Rotenona/toxicidade
17.
Eur J Pharmacol ; 938: 175439, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470445

RESUMO

Aging is a crucial risk factor for common neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Limited options are available for the treatment of age-related, multiple pathogenic mechanism-contributed diseases that usually advance to irreversible conditions with severe neurological deficits and result in a heavy socioeconomic burden on patients, families, and society. A therapy that decelerates disease progression and reduces the socioeconomic burden stemming from these diseases is required. Glucagon-like peptide-1 receptor (GLP-1R) is an important class of medication for type 2 diabetes mellitus (T2DM). Through pancreatic effects, GLP-1R agonists can stimulate insulin secretion, increase ß-cell proliferation, reduce ß-cell apoptosis, and inhibit glucagon secretion in patients with T2DM. Currently, seven clinically approved GLP-1R agonists are used for T2DM: exenatide, liraglutide, lixisenatide, extended-release exenatide, albiglutide, dulaglutide, and semaglutide. Besides the pancreas, GLP-1Rs are also expressed in organs, such as the gastrointestinal tract, heart, lung, kidney, and brain, indicating their potential use in diseases other than T2DM. Emerging evidence reveals that GLP-1R agonists possess pleiotropic effects that enrich neurogenesis, diminish apoptosis, preclude neurons from oxidative stress, and reduce neuroinflammation in various neurological conditions. These favorable effects may also be employed in neurodegenerative diseases. Herein, we reviewed the recent progress, both in preclinical studies and clinical trials, regarding these clinically used GLP-1R agonists in aging-related neurodegenerative diseases, mainly AD and PD. We stress the pleiotropic characteristics of GLP-1R agonists as repurposing drugs to target multiple pathological mechanisms and for use in the future for these devastating neurodegenerative conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Exenatida/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Hipoglicemiantes/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/induzido quimicamente
18.
Neurobiol Dis ; 46(2): 450-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22402332

RESUMO

In current study, we tested the hypothesis that c-Jun-dependent sulfiredoxin expression mediates protective effects of brain-derived neurotrophic factor (BDNF) against neurotoxicity induced by 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, in primary rat cortical cultures. We found that BDNF-dependent c-Jun expression and nuclear translocation required prior phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not Akt. BDNF also transiently activated the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, at both mRNA and protein levels. Furthermore, both c-Jun siRNA and ERK1/2 inhibitor PD98059 suppressed BDNF-induced sulfiredoxin expression. Finally, PD98059, c-Jun siRNA, and sulfiredoxin siRNA all abrogated BDNF-mediated 3-NP resistance. Together, these results established a signaling cascade of "BDNF → ERK1/2-Pi → c-Jun → sulfiredoxin → 3-NP resistance". We therefore conclude that c-Jun-induced sulfiredoxin mediates the BDNF-dependent neuroprotective effects against 3-NP toxicity in primary rat cortical neurons, at least in part.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Mitocôndrias/enzimologia , Inibição Neural/fisiologia , Neurônios/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/biossíntese , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Indução Enzimática/fisiologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/antagonistas & inibidores , Nitrocompostos/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Propionatos/antagonistas & inibidores , Propionatos/toxicidade , Ratos , Ratos Sprague-Dawley
19.
J Neuroinflammation ; 9: 184, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849356

RESUMO

BACKGROUND: Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. METHODS: In Sprague-Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O(·2)(-)) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. RESULTS: Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3-48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12-48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O(·2)(-) overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. CONCLUSIONS: Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus.


Assuntos
Hipocampo/metabolismo , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , Neurônios/patologia , PPAR gama/fisiologia , Convulsões/metabolismo , Transdução de Sinais/fisiologia , Estado Epiléptico/metabolismo , Animais , Morte Celular/fisiologia , Hipocampo/patologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Convulsões/patologia , Convulsões/prevenção & controle , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controle , Proteína Desacopladora 2
20.
Epilepsia ; 53(11): 2005-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22988820

RESUMO

PURPOSE: Lamotrigine (LTG) is an effective clinical treatment for epilepsy associated with absence seizures. However, the impact of LTG administration in studies employing various animal models of epilepsy remains controversial. This study aimed to clarify the outcomes of LTG treatment on absence seizures and comorbid anxiety and depression disorders in Long-Evans rats with spontaneous spike-wave discharges (SWDs). METHODS: LTG (10 mg/kg) or water vehicle was chronically administered perorally to Long-Evans rats (twice daily for 35 days). Cortical activities were recorded to assess the presence of SWDs. Five behavioral tests, including the open field (OF), elevated plus maze (EPM), sucrose consumption (SC), sucrose preference, and forced swimming (FS) tests, were performed after LTG/vehicle treatment. The behavioral indexes of these tests were designed to assess anxiety (OF and EPM tests), depression (SC and FS tests), and preference for hedonistic stimuli (sugar preference test). KEY FINDINGS: Total SWD duration, SWD number, and mean SWD duration were significantly decreased in rats that received 35-day LTG treatment compared with rats that received vehicle treatment. Rats with spontaneous SWDs versus rats with no SWDs showed significant levels of anxiety and depression in the OF, EPM, and SC tests. Rats with SWDs also showed longer immobility in the FS test. However, the LTG-treated group compared with the vehicle group presented with significantly lower manifestations of anxiety and depression in the OF, EPM, SC, and sucrose preference tests and shorter immobility in the FS test. SIGNIFICANCE: The results of this study suggest that chronic LTG treatment can benefit patients with epilepsy via suppression of absence seizures and amelioration of comorbid anxiety and depression.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Epilepsia Tipo Ausência/tratamento farmacológico , Convulsões/tratamento farmacológico , Triazinas/uso terapêutico , Animais , Anticonvulsivantes/uso terapêutico , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/psicologia , Comorbidade , Transtorno Depressivo/epidemiologia , Transtorno Depressivo/psicologia , Epilepsia Tipo Ausência/epidemiologia , Epilepsia Tipo Ausência/psicologia , Lamotrigina , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans , Convulsões/epidemiologia , Convulsões/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa