Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(8): e1011071, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102428

RESUMO

Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Biofilmes , Cisteína Endopeptidases , Enterococcus faecalis , Fímbrias Bacterianas , Chaperonas Moleculares , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Enterococcus faecalis/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Virulência/genética , Antibacterianos/farmacologia , Ceftriaxona/farmacologia
2.
PLoS Pathog ; 20(8): e1012400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39133742

RESUMO

Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.


Assuntos
Genoma Bacteriano , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/genética , Animais , Humanos , Bovinos , Especificidade de Hospedeiro/genética , Genômica , Peixes/microbiologia , Filogenia
3.
Proc Natl Acad Sci U S A ; 119(45): e2105458119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322728

RESUMO

Despite dramatic advances in genomics, connecting genotypes to phenotypes is still challenging. Sexual genetics combined with linkage analysis is a powerful solution to this problem but generally unavailable in bacteria. We build upon a strong negative selection system to invent mass allelic exchange (MAE), which enables hybridization of arbitrary (including pathogenic) strains of Escherichia coli. MAE reimplements the natural phenomenon of random cross-overs, enabling classical linkage analysis. We demonstrate the utility of MAE with virulence-related gain-of-function screens, discovering that transfer of a single operon from a uropathogenic strain is sufficient for enabling a commensal E. coli to form large intracellular bacterial collections within bladder epithelial cells. MAE thus enables assaying natural allelic variation in E. coli (and potentially other bacteria), complementing existing loss-of-function genomic techniques.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Virulência/genética , Fatores de Virulência/genética
4.
Nucleic Acids Res ; 49(13): 7375-7388, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181709

RESUMO

DNA methylation is a common epigenetic mark that influences transcriptional regulation, and therefore cellular phenotype, across all domains of life. In particular, both orphan methyltransferases and those from phasevariable restriction modification systems (RMSs) have been co-opted to regulate virulence epigenetically in many bacteria. We now show that three distinct non-phasevariable Type I RMSs in Escherichia coli have no measurable impact on gene expression, in vivo virulence, or any of 1190 in vitro growth phenotypes. We demonstrated this using both Type I RMS knockout mutants as well as heterologous installation of Type I RMSs into two E. coli strains. These data provide three clear and currently rare examples of restriction modification systems that have no impact on their host organism's gene regulation. This leads to the possibility that other such nonregulatory methylation systems may exist, broadening our view of the potential role that RMSs may play in bacterial evolution.


Assuntos
Metilação de DNA , Enzimas de Restrição-Modificação do DNA , Escherichia coli/genética , Animais , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica , Camundongos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade
5.
Antimicrob Agents Chemother ; 65(8): e0258420, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34001509

RESUMO

Movement of patients in a health care network poses challenges for the control of carbapenemase-producing Enterobacteriaceae (CPE). We aimed to identify intra- and interfacility transmission events and facility type-specific risk factors of CPE in an acute-care hospital (ACH) and its intermediate-term and long-term-care facilities (ILTCFs). Serial cross-sectional studies were conducted in June and July of 2014 to 2016 to screen for CPE. Whole-genome sequencing was done to identify strain relatedness and CPE genes (blaIMI, blaIMP-1, blaKPC-2, blaNDM-1, and blaOXA-48). Multivariable logistic regression models, stratified by facility type, were used to determine independent risk factors. Of 5,357 patients, half (55%) were from the ACH. CPE prevalence was 1.3% in the ACH and 0.7% in ILTCFs (P = 0.029). After adjusting for sociodemographics, screening year, and facility type, the odds of CPE colonization increased significantly with a hospital stay of ≥3 weeks (adjusted odds ratio [aOR], 2.67; 95% confidence interval [CI], 1.17 to 6.05), penicillin use (aOR, 3.00; 95% CI, 1.05 to 8.56), proton pump inhibitor use (aOR, 3.20; 95% CI, 1.05 to 9.80), dementia (aOR, 3.42; 95% CI, 1.38 to 8.49), connective tissue disease (aOR, 5.10; 95% CI, 1.19 to 21.81), and prior carbapenem-resistant Enterobacteriaceae (CRE) carriage (aOR, 109.02; 95% CI, 28.47 to 417.44) in the ACH. For ILTCFs, presence of wounds (aOR, 5.30; 95% CI, 1.01 to 27.72), respiratory procedures (aOR, 4.97; 95% CI, 1.09 to 22.71), vancomycin-resistant enterococcus carriage (aOR, 16.42; 95% CI, 1.52 to 177.48), and CRE carriage (aOR, 758.30; 95% CI, 33.86 to 16,982.52) showed significant association. Genomic analysis revealed only possible intra-ACH transmission and no evidence for ACH-to-ILTCF transmission. Although CPE colonization was predominantly in the ACH, risk factors varied between facilities. Targeted screening and precautionary measures are warranted.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Estudos Transversais , Atenção à Saúde , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Hospitais , Humanos , Singapura , beta-Lactamases/genética
6.
J Antimicrob Chemother ; 76(5): 1299-1302, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33417711

RESUMO

OBJECTIVES: To estimate the transmission rate of carbapenemase-producing Enterobacteriaceae (CPE) in households with recently hospitalized CPE carriers. METHODS: We conducted a prospective case-ascertained cohort study. We identified the presence of CPE in stool samples from index subjects, household contacts and companion animals and environmental samples at regular intervals. Linked transmissions were identified by WGS. A Markov model was constructed to estimate the household transmission potential of CPE. RESULTS: Ten recently hospitalized index patients and 14 household contacts were included. There were seven households with one contact, two households with two contacts, and one household with three contacts. Index patients were colonized with blaOXA-48-like (n = 4), blaKPC-2 (n = 3), blaIMP (n = 2), and blaNDM-1 (n = 1), distributed among divergent species of Enterobacteriaceae. After a cumulative follow-up time of 9.0 years, three family members (21.4%, 3/14) acquired four different types of CPE in the community (hazard rate of 0.22/year). The probability of CPE transmission from an index patient to a household contact was 10% (95% CI 4%-26%). CONCLUSIONS: We observed limited transmission of CPE from an index patient to household contacts. Larger studies are needed to understand the factors associated with household transmission of CPE and identify preventive strategies.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Estudos de Coortes , Infecções por Enterobacteriaceae/epidemiologia , Humanos , Estudos Prospectivos , beta-Lactamases/genética
7.
Emerg Infect Dis ; 26(9): 2182-2185, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818397

RESUMO

To determine the duration of carbapenemase-producing Enterobacteriaceae (CPE) carriage, we studied 21 CPE carriers for ¼1 year. Mean carriage duration was 86 days; probability of decolonization in 1 year was 98.5%, suggesting that CPE-carriers' status can be reviewed yearly. Prolonged carriage was associated with use of antimicrobial drugs.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Proteínas de Bactérias/genética , Infecções por Enterobacteriaceae/epidemiologia , Hospitais , Humanos , beta-Lactamases/genética
8.
Bioinformatics ; 35(15): 2668-2670, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541067

RESUMO

MOTIVATION: Stirling numbers enter into the calculation of several population genetics statistics, including Fu's Fs. However, as alignments become large (≥50 sequences), the Stirling numbers required rapidly exceed the standard floating point range. Another recursive method for calculating Fu's Fs suffers from floating point underflow issues. RESULTS: I implemented an estimator for Stirling numbers that has the advantage of being uniformly applicable to the full parameter range for Stirling numbers. I used this to create a hybrid Fu's Fs calculator that accounts for floating point underflow. My new algorithm is hundreds of times faster than the recursive method. This algorithm now enables accurate calculation of statistics such as Fu's Fs for very large alignments. AVAILABILITY AND IMPLEMENTATION: An R implementation is available at http://github.com/swainechen/hfufs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genética Populacional , Software , Algoritmos , Alinhamento de Sequência
9.
Microb Cell Fact ; 19(1): 71, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192516

RESUMO

Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster. From this strain, we further characterized a new more potent antifungal non-sulfated analogue, named notonesomycin B. Through CRISPR-Cas9 engineering of the biosynthetic gene cluster, we were able to increase the production yield of notonesomycin B by up to 18-fold as well as generate a strain that exclusively produces this analogue.


Assuntos
Antifúngicos/isolamento & purificação , Macrolídeos/isolamento & purificação , Streptomyces/genética , Antifúngicos/metabolismo , Clonagem Molecular , Macrolídeos/metabolismo , Família Multigênica , Streptomyces/metabolismo
10.
BMC Genomics ; 20(1): 374, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088369

RESUMO

BACKGROUND: Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis. RESULTS: Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined. CONCLUSIONS: We describe the NRPS-t1PKS cluster 'BIIRfg' compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.


Assuntos
Antifúngicos/química , Depsipeptídeos/química , Proteínas Fúngicas/genética , Saccharomycetales/genética , Sequência de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Vias Biossintéticas , Depsipeptídeos/biossíntese , Depsipeptídeos/farmacologia , Genômica , Estrutura Molecular , Família Multigênica , Saccharomycetales/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa