Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16739-16747, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37473452

RESUMO

Three hitherto unknown eight-electron rhodium/silver alloy nanoclusters, [RhAg21{S2P(OnPr)2}12] (1), [RhHAg20{S2P(OnPr)2}12] (2), and [RhH2Ag19{S2P(OnPr)2}12] (3), have been isolated and fully characterized. Cluster 1 contains a regular Rh@Ag12 icosahedral core, whereas 2 and 3 exhibit distorted RhH@Ag12 and RhH2@Ag12 icosahedral cores. The single-crystal neutron structure of 2 located the encapsulated hydride at the center of an enlarged RhAg3 tetrahedron. A similar position was found by neutron diffraction for one of the hydrides in 3, whereas the other hydride is trigonally coordinated to Rh and an elongated Ag-Ag edge. The solid-state structures of 1-3 possess C1 symmetry due to the asymmetric arrangement of the surrounding capping Ag atoms. Our investigation shows that the insertion of one hydride dopant provokes the elimination of one capping silver atom on the cluster surface, resulting in the general formula [RhHx@Ag21-x{S2P(OnPr)2}12] (x = 0-2), which maintains the same number of cluster electrons as well as neutral charge. Clusters 1-3 exhibit an intense emission band in the NIR region. Contrarily to their PdAg21 and PdHAg20 relatives, the 4d orbitals of the encapsulated heterometal are somewhat involved in the optical processes.

2.
Inorg Chem ; 60(14): 10799-10807, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236845

RESUMO

The synthesis, structural characteristics, and photophysical properties of luminescent Cu-rich bimetallic superatomic clusters [Au@Cu12(S2CNnPr2)6(C≡CPh)4]+ (1a+), [Au@Cu12{S2P(OR)2}6(C≡CPh)4]+ (2+), (2a+ = iPr; 2b+ = nPr), [Au@Cu12{S2P(C2H4Ph)2}6(C≡CPh)4]+ (2c+), and [Ag@Cu12{S2P(OnPr)2}6(C≡CPh)4]+ (3+) were studied. Compositionally uniform clusters 1+-3+ were isolated from the reaction of dithiolato-stabilized, polyhydrido copper clusters with phenylacetylene in the presence of heterometal salts. By using X-ray diffraction, the structures of 1a+, 2a+, 2b+, and 3+ were able to be determined. ESI-mass spectrometry and elemental analysis confirmed their compositions and purity. The structural characteristics of these clusters are similar with respect to displaying gold (or silver)-centered Cu12 cuboctahedra surrounded by six dithiocarbamate/dithiophosph(in)ate and four alkynyl ligands. The doping of Au and Ag atoms into the polyhydrido copper nanoclusters significantly enhances their PL quantum yields from Ag@Cu12 (0.58%) to Au@Cu12 (55%) at ambient temperature in solution. In addition, the electrochemical properties of the new alloys were investigated by cyclic voltammetry.

3.
J Phys Chem A ; 125(4): 903-919, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33470828

RESUMO

Efficient charge-transfer (CT) phosphorescence in the near-IR (NIR) spectral region is reported for four substituted Ru-(R-dipyrrinato) complexes, [Ru(bpy)2(R-dipy)](PF6), where bpy is 2,2'-bipyridine and the substituent R is phenyl (ph), 2,4,6-trimethylphenyl, 4-carboxyphenyl (HOOC-ph), or 4-pyridinyl. The experimentally determined phosphorescence efficiency, ιem(p) = kRAD(p)/(νem(p))3 (where kRAD(p) and νem(p) are the phosphorescence rate constant and the phosphorescence frequency, respectively), of the [Ru(bpy)2(R-dipy)]+ complexes was approximately double that of [Ru(bpy)(Am)4]2+ complexes (Am = ammine ligand) in the NIR region. Density functional theory (DFT) modeling indicated two strikingly different electronic configurations of the triplet emitting state (Te) in the two types of complexes. The Te of [Ru(bpy)2(R-dipy)]+ complexes shows a CT-type corresponding to the metal-to-ligand charge transfer (MLCT)-(Ru-(R-dipy)) and the ππ*-(R-dipy) moiety configurations, and the Te state in the [Ru(bpy)(Am)4]2+ complexes corresponds to an approximately MLCT excited state consisting of mostly MLCT-(Ru-bpy) with a minimal ππ*(bpy) contribution. DFT modeling also indicated that the low-energy singlet excited states in the Te geometry (Sn(T)) of the [Ru(bpy)2(ph-dipy)]+ complex consist of numerous CT-Sn(T)-type states of the Ru-dipy and Ru-bpy moieties, whereas the [Ru(bpy)(Am)4]2+ ions show quite simple MLCT-Sn(T)-type states of the Ru-bpy moiety. Based on experimental observations, DFT modeling, and the plain spin-orbit coupling (SOC) principle, we conclude that the remarkably high ιem(p) amplitudes of the [Ru(bpy)2(R-dipy)]+ complexes relative to those of [Ru(bpy)(Am)4]2+ complexes can be attributed to the relatively substantial contribution of intrinsic SOC-mediated intensity stealing from the numerous low-energy CT-type Sn(T) states.

4.
J Phys Chem A ; 123(44): 9431-9449, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31557033

RESUMO

The 77 K emission spectra of cyclometalated ruthenium(II)-2,2'-bipyridine (CM-Ru-bpy) chromophores are very similar to those of related Ru-bpy complexes with am(m)ine or diimmine ancillary ligands, and density functional theory (DFT) modeling confirms that the lowest energy triplet metal to ligand charge transfer (3MLCT) excited states of CM-Ru-bpy and related Ru-bpy complexes have very similar electronic configurations. However, the phosphorescence decay efficiencies of CM-Ru-bpy excited states are about twice those of the conventional Ru-bpy analogues. In contrast to the similar 3MLCT excited state electronic configurations of the two classes of complexes, the CM-Ru-bpy chromophores have much broader visible region MLCT absorptions resulting from several overlapping transitions, even at 87 K. The emitting excited-state emission efficiencies depend on spin-orbit coupling (SOC) mediated intensity stealing from singlet excited states, and this work explores the relationship between the phosphorescence efficiency and visible region absorption spectra of Ru-bpy 3MLCT excited states in the weak SOC limit. The intrinsic 3MLCT emission efficiency, ιem, depends on mixing with singlet excited states whose RuIII-dπ-orbital angular momenta differ from that of the emitting state. DFT modeling of the 1MLCT excited-state electronic configurations that contribute significantly to the lowest energy absorption bands have RuIII-dπ orbitals that differ from those of their emitting 3MLCT excited states. This leads to a very close relationship between ιem and the lowest energy MLCT band absorptivities in Ru-bpy chromophores. Thus, the larger number of 1MLCT transitions that contribute to the lowest energy absorption bands accounts for the enhanced phosphorescence efficiency of Ru-bpy complexes with cyclometalated ancillary ligands.

5.
Chemistry ; 22(29): 9943-7, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27189869

RESUMO

The synthesis and structural determination of a silver nanocluster [Ag20 {S2 P(OiPr)2 }12 ] (2), which contains an intrinsic chiral metallic core, is produced by reduction of one silver ion from the eight-electron superatom complex [Ag21 {S2 P(OiPr)2 }12 ](PF6 ) (1) by borohydrides. Single-crystal X-ray analysis displays an Ag20 core of pseudo C3 symmetry comprising a silver-centered Ag13 icosahedron capped by seven silver atoms. Its n-propyl derivative, [Ag20 {S2 P(OnPr)2 }12 ] (3), can also be prepared by the treatment of silver(I) salts and dithiophosphates in a stoichiometric ratio in the presence of excess amount of [BH4 ](-) . Crystal structure analyses reveal that the capping silver-atom positions relative to their icosahedral core are distinctly different in 2 and 3 and generate isomeric, chiral Ag20 cores. Both Ag20 clusters display an emission maximum in the near IR region. DFT calculations are consistent with a description within the superatom model of an 8-electron [Ag13 ](5+) core protected by a [Ag7 {S2 P(OR)2 }12 ](5-) external shell. Two additional structural variations are predicted by DFT, showing the potential for isomerism in such [Ag20 {S2 P(OR)2 }12 ] species.

6.
Inorg Chem ; 55(15): 7341-55, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27437560

RESUMO

Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state energy ranges (hνem). The excited state energy dependencies of the emission intensity are characterized by mean radiative decay rate constants, kRAD, resolved from ϕem/τobs = kRAD (τobs = the observed emission decay lifetime; τobs(-1) = kRAD + kNRD; kNRD = nonradiative decay rate constant). Except for the Ru-pz chromophores in alcohol glasses, the values of kNRD for the Ru-MDA chromophores are slightly smaller, and their dependences on excited state energies are very similar to those of related Ru-bpy chromophores. In principle, one expects kRAD to be proportional to the product of (hνem)(3) and the square of the transition dipole moment (Me,g).(2) However, from experimental studies of Ru-bpy chromophores, an additional hνem dependence has been found that originates in an intensity stealing from a higher energy excited state with a much larger value of Me,g. This additional hνem dependence is not present in the kRAD energy dependence for Ru-MDA chromophores in the same energy regime. Intensity stealing in the phosphorescence of these complexes is necessary since the triplet-to-singlet transition is only allowed through spin-orbit coupling and since the density functional theory modeling implicates configurational mixing between states in the triplet spin manifold; this is treated by setting Me,g equal to the product of a mixing coefficient and the difference between the molecular dipole moments of the states involved, which implicates an experimental first order dependence of kRAD on hνem. The failure to observe intensity stealing for the Ru-MDA complexes suggests that their weak emissions are more typical of "pure" (or unmixed) (3)MLCT excited states.

7.
Inorg Chem ; 54(17): 8495-508, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26302226

RESUMO

This is the first report of the 77 K triplet metal-to-ligand charge-transfer ((3)MLCT) emission spectra of pentaammine-MDA-ruthenium(II) ([Ru(NH3)5(MDA)](2+)) complexes, where MDA is a monodentate aromatic ligand. The emission spectra of these complexes and of the related trans-[Ru(NH3)4(MDA) (MDA')](2+) complexes are closely related, and their emission intensities are very weak. Density functional theory (DFT) calculations indicate that the energies of the lowest (3)MLCT excited states of Ru-MDA complexes are either similar to or lower than those of the lowest energy metal-centered excited states ((3)MC(X(Y))), that the barrier to internal conversion at 77 K is large compared to kBT, and that the (3)MC(X(Y)) excited states are weakly bound. The [Ru(NH3)5py](2+) complex is an exception to the general pattern: emission has been observed for the [Ru(ND3)5(d5-py)](2+) complex, but its lifetime is apparently very short. DFT modeling indicates that the excited state distortions of the different (3)MC excited states are very large and are in both Ru-ligand bonds along a single Cartesian axis for each different (3)MC excited state, nominally resulting in (3)MC(X(Y)), (3)MC((X)Y), and (3)MC(Z) lowest energy metal-centered states. The (3)MC(X(Y)) and (3)MC((X)Y) states appear to be the pseudo-Jahn-Teller distorted components of a (3)MC((XY)) state. The (3)MC(X(Y)) states are distorted up to 0.5 Šin each H3N-Ru-NH3 bond along a single Cartesian axis in the pentaammine and trans-tetraammine complexes, whereas the (3)MC(Z) states are found to be dissociative. DFT modeling of the (3)MLCT excited state of [Ru(NH3)5(py)](2+) indicates that the Ru center has a spin density of 1.24 at the (3)MLCT energy minimum and that the (3)MLCT → (3)MC(Z) crossing is smooth with a very small barrier (<0.5 kcal/mol) along the D3N-Ru-py distortion coordinate, implying strong (3)MLCT/(3)MC excited state configurational mixing. Furthermore, the DFT modeling indicates that the long-lived intermediate observed in earlier flash photolysis studies of [Ru(NH3)5py](2+) is a Ru(II)-(η(2)(C═C)-py) species.

8.
Nanoscale ; 16(14): 7011-7018, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511284

RESUMO

This study investigates the effects of metal addition and doping of a 2-electron silver superatom, [Ag10{S2P(OiPr)2}8] (Ag10). When Ag+ is added to Ag10 in THF solution, [Ag11{S2P(OiPr)2}8(OTf)] (Ag11) is rapidly formed almost quantitatively. When the same method is used with Cu+, a mixture of alloys, [CuxAg11-x{S2P(OiPr)2}8]+ (x = 1-3, CuxAg11-x), is obtained. In contrast, introducing Au+ to Ag10 leads to decomposition. The structural and compositional analysis of Ag11 was characterized by single-crystal X-ray diffraction (SCXRD), ESI-MS, NMR spectroscopy, and DFT calculations. While no crystal structure was obtained for CuxAg11-x, DFT calculations provide insights into potential sites for copper location. The absorption spectrum exhibits a notable blue shift in the low-energy band after copper doping, contrasting with that of the slight shift observed in 8-electron Cu-doped Ag nanoclusters. Ag11 and CuxAg11-x are strongly emissive at room temperature, and solvatochromism across different organic solvents is highlighted. This study underscores the profound influence of metal addition and doping on the structural and optical properties of silver nanoclusters, providing important contributions to understanding the nanoclusters and their photophysical behaviors.

9.
Inorg Chem ; 52(3): 1185-98, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23343436

RESUMO

A computational approach for calculating the distortions in the lowest energy triplet metal to ligand charge-transfer ((3)MLCT = T(0)) excited states of ruthenium(II)-bipyridine (Ru-bpy) complexes is used to account for the patterns of large variations in vibronic sideband amplitudes found in the experimental 77 K emission spectra of complexes with different ancillary ligands (L). Monobipyridine, [Ru(L)(4)bpy](m+) complexes are targeted to simplify analysis. The range of known emission energies for this class of complexes is expanded with the 77 K spectra of the complexes with (L)(4) = bis-acetonylacetonate (emission onset at about 12,000 cm(-1)) and 1,4,8,11-tetrathiacyclotetradecane and tetrakis-acetonitrile (emission onsets at about 21,000 cm(-1)); no vibronic sidebands are resolved for the first of these, but they dominate the spectra of the last two. The computational modeling of excited-state distortions within a Franck-Condon approximation indicates that there are more than a dozen important distortion modes including metal-ligand modes (low frequency; lf) as well as predominately bpy modes (medium frequency; mf), and it simulates the observed 77 K emission spectral band shapes of selected complexes very well. This modeling shows that the relative importance of the mf modes increases very strongly as the T(0) energy increases. Furthermore, the calculated metal-centered SOMOs show a substantial bpy-π-orbital contribution for the complexes with the highest energy T(0). These features are attributed to configurational mixing between the diabatic MLCT and the bpy (3)ππ* excited states at the highest T(0) energies.


Assuntos
2,2'-Dipiridil/química , Compostos Organometálicos/química , Teoria Quântica , Rutênio/química , Temperatura , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química
10.
Inorg Chem ; 52(17): 9774-90, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23952527

RESUMO

The heretofore unknown emission properties of the metal-to-ligand charge-transfer (MLCT) excited states of several complexes with (ruthenium)(monodentate aromatic ligand, MDA) chromophores are given. Emission spectra and lifetimes in 77 K glasses are reported for several monometallic complexes of the type [Ru(NH3)(5-n)(L)(n)(MDA)](2+) and two bimetallic pyrazine (pz)-bridged [{Ru(NH3)(4-n)(L)(n)}2pz](4+) complexes (L = pz, pyridine, or a multipyridine ligand; MDA = pz or a substituted pyridine, Y-py). The emission maxima occur in the visible and near-IR spectral regions and have much more poorly resolved vibronic sidebands than do related complexes with Ru-bpy chromophores, and the excited-state lifetimes are characteristic of Ru-bpy MLCT excited states in this energy range. The emission yields of trans-[Ru(NH3)4(MDA)(pz)](2+) (MDA = py or pz) are less than 0.2%, and combined with the other observations, this implies that most of the excited-state quenching occurs in high-energy excited states whose population precedes that of the lowest-energy (3)MLCT excited state. The pz-bridged, bimetallic complexes have mixed-valence excited states, and they absorb and emit at lower energies than their monometallic analogues do.

11.
ACS Omega ; 8(12): 11623-11633, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008138

RESUMO

The synthesis, electrochemistry, and photophysical characterization of five 2,2':6',2″-terpyridine ruthenium complexes (Ru-tpy complexes) is reported. The electrochemical and photophysical behavior varied depending on the ligands, i.e., amine (NH3), acetonitrile (AN), and bis(pyrazolyl)methane (bpm), for this series of Ru-tpy complexes. The target [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ complexes were found to have low-emission quantum yields in low-temperature observations. To better understand this phenomenon, density functional theory (DFT) calculations were performed to simulate the singlet ground state (S0), Te, and metal-centered excited states (3MC) of these complexes. The calculated energy barriers between Te and the low-lying 3MC state for [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ provided clear evidence in support of their emitting state decay behavior. Developing a knowledge of the underlying photophysics of these Ru-tpy complexes will allow new complexes to be designed for use in photophysical and photochemical applications in the future.

12.
ACS Omega ; 7(51): 48583-48599, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591186

RESUMO

A series of π-aromatic-rich cyclometalated ruthenium(II)-(2,2'-bipyridine) complexes ([Ru(bpy)2(πAr-CM)]+) in which πAr-CM is diphenylpyrazine or 1-phenylisoquinoline were prepared. The [Ru(bpy)2(πAr-CM)]+ complexes had remarkably high phosphorescence rate constants, k RAD(p), and the intrinsic phosphorescence efficiencies (ιem(p) = k RAD(p)/(νem(p))3) of these complexes were found to be twice the magnitudes of simply constructed cyclometalated ruthenium(II) complexes ([Ru(bpy)2(sc-CM)]+), where νem(p) is the phosphorescence frequency and sc-CM is 2-phenylpyridine, benzo[h]quinoline, or 2-phenylpyrimidine. Density functional theory (DFT) modeling of the [Ru(bpy)2(CM)]+ complexes indicated numerous singlet metal-to-ligand charge transfers for 1MLCT-(Ru-bpy) and 1MLCT-(Ru-CM), excited states in the low-energy absorption band and 1ππ*-(aromatic ligand) (1ππ*-LAr) excited states in the high-energy band. DFT modeling of these complexes also indicated phosphorescence-emitting state (Te) configurations with primary MLCT-(Ru-bpy) characteristics. The variation in ιem(p) for the spin-forbidden Te (3MLCT-(Ru-bpy)) excited state of the complex system that was examined in this study can be understood through the spin-orbit coupling (SOC)-mediated sum of intensity stealing (∑SOCM-IS) contribution from the primary intensity of the low-energy 1MLCT states and second-order intensity perturbation from the significant configuration between the low-energy 1MLCT and high-energy intense 1ππ*-LAr states. In addition, the observation of unusually high ιem(p) magnitudes for these [Ru(bpy)2(πAr-CM)]+ complexes can be attributed to the values for both intensity factors in the ∑SOCM-IS formalism being individually greater than those for [Ru(bpy)2(sc-CM)]+ ions.

13.
Inorg Chem ; 50(17): 8274-80, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21809814

RESUMO

Electrochemical properties of cyanide-bridged metal squares, [Ru(4)](4+) and [Rh(2)-Ru(2)](6+), clearly demonstrate the role of the nearest (NN) metal moiety in mediating the next-nearest neighbor (NNN) metal-to-metal electronic coupling. The differences in electrochemical potentials for successive oxidations of equivalent Ru(II) centers in [Ru(4)](4+) are ΔE(1/2) = 217 mV and 256 mV and are related to intense, dual metal-to-metal-charge-transfer (MMCT) absorption bands. This contrasts with a small value of ΔE(1/2) = 77 mV and no MMCT absorption bands observed to accompany the oxidations of [Rh(2)-Ru(2)](6+). These observations demonstrate NN-mediated superexchange mixing by the linker Ru of NNN Ru(II) and Ru(III) moieties and that this mixing results in a NNN contribution to the ground state stabilization energy of about 90 ± 20 meV. In contrast, the classical Hush model for mixed valence complexes with the observed MMCT absorption parameters predicts a NNN stabilization energy of about 6 meV. The observations also indicate that the amount of charge delocalization per Ru(II)/Ru(III) pair is about 4 times greater for the NN than the NNN couples in these CN-bridged complexes, which is consistent with DFT modeling. A simple fourth-order secular determinant model is used to describe the effects of donor/acceptor mixing in these complexes.


Assuntos
Cianetos/química , Compostos Organometálicos/química , Rutênio/química , Eletroquímica , Elétrons , Compostos Organometálicos/síntese química , Teoria Quântica , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho
14.
Inorg Chem ; 50(23): 11965-77, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22066683

RESUMO

The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2''-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.

15.
Inorg Chem ; 49(15): 6840-52, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20614928

RESUMO

The lowest energy metal to ligand charge transfer (MLCT) absorption bands found in ambient solutions of [Ru(NH(3))(4)(Y-py)(2)](2+) and [Ru(L)(2)(bpy)(2)](+) complexes (Y-py a pyridine ligand and (L)(n) a substituted acetonylacetonate, halide, am(m)ine, etc.) consist of two partly resolved absorption envelopes, MLCT(lo) and MLCT(hi). The lower energy absorption envelope, MLCT(lo), in these spectra has the larger amplitude for the bis-(Y-py) complexes, but the smaller amplitude for the bis-bpy the complexes. Time-dependent density functional theory (TD-DFT) approaches have been used to model 14 bis-bpy, three bis-(Y-py), and three mono-bpy complexes. The modeling indicates that the lowest unoccupied molecular orbital (LUMO) of each bis-(Y-py) complex corresponds to the antisymmetric combination of individual Y-py acceptor orbitals and that the transition involving the highest occupied molecular orbital (HOMO) and LUMO (HOMO-->LUMO) is the dominant contribution to MLCT(lo) in this class of complexes. The LUMO of each bis-bpy complex that contains a C(2) symmetry axis also corresponds largely to the antisymmetric combination of individual ligand acceptor orbitals, while the LUMOs are more complex when there is no C(2) axis; furthermore, the energy difference between the HOMO-->LUMO and HOMO-->LUMO+1 transitions is too small (<1000 cm(-1)) to resolve in the spectra of the bis-bpy complexes in ambient solutions. Relatively weak MLCT(lo) absorption contributions are found for all of the [Ru(L)(2)(bpy)(2)](m+) complexes examined, but they are experimentally best defined in the spectra of the (L)(2) = X-acac complexes. TD-DFT modeling of the HOMO-->LUMO transition of [Ru(L)(4)bpy](m+) complexes indicates that it is too weak to be detected and occurs at significantly lower energy (about 3000-5000 cm(-1)) than the observed MLCT absorptions. Since the chemical properties of MLCT excited states are generally correlated with the HOMO and/or LUMO properties of the complexes, such very weak HOMO-->LUMO transitions can complicate the use of spectroscopic information in their assessment. As an example, it is observed that the correlation lines between the absorption energy maxima and the differences in ground state oxidation and reduction potentials (DeltaE(1/2)) have much smaller slopes for the bis-bpy than the mono-bpy complexes. However, the observed MLCT(lo) and the calculated HOMO-->LUMO transitions of bis-bpy complexes correlate very similarly with DeltaE(1/2) and this indicates that it is the low energy and small amplitude component of the lowest energy MLCT absorption band that is most appropriately correlated with excited state chemistry, not the absorption maximum as is often assumed.

16.
Inorg Chem ; 48(5): 1857-70, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235949

RESUMO

The relationships between the intervalence energy (E(IT)) and the free energy difference (DeltaG) that exists between the minima of redox isomers (Fe(II)-Ru(III)/Fe(III)-Ru(II)) for various heterobimetallic complexes [(R-Fcpy)Ru(NH(3))(5)](2+/3+) (R = H, ethyl, Br, actyl; Fcpy = (4-pyridyl)ferrocenyl; Ru(NH(3))(5) = pentaam(m)ineruthenium) were examined. The changes in DeltaG for the complexes in various solvents were due to the effects of both solvent donicity and the substituents. The intervalence energy versus DeltaG, DeltaG approximately FDeltaE(1/2) (DeltaE(1/2) = E(1/2)(Fe(III/II)) - E(1/2)(Ru(III/II))), plots for the complexes in various solvents suggest a nuclear reorganization energy (lambda) of approximately 6000 cm(-1) (Chen et al. Inorg. Chem. 2000, 39, 189). For [(R-Fcpy)Ru(NH(3))(5)](2+) and [(et-Fcpy)Ru(NH(3))(4)(py)](2+) (Ru(NH(3))(4) = trans-tetraam(m)ineruthenium; py = pyridine) in various solvents, the E(1/2)(Ru(III/II)) of rutheniumam(m)ine typically was less than the E(1/2)(Fe(III/II)) of the ferrocenyl moiety. However, the low-donicity solvents resulted in relatively large values of E(1/2)(Ru(III/II)) for [(et-Fcpy)Ru(NH(3))(4)(py)](2+/3+/4+). Under our unique solvent conditions, a dramatic end-to-end interaction was observed for the trimetal cation, [(et-Fcpy)(2)Ru(NH(3))(4)](4+), in which the [(et-Fcpy)(2)Ru(NH(3))(4)](4+) included a central trans-tetraam(m)ineruthenium(III) and a terminal Fe(II)/Fe(III) pair. In general, results of electrochemical studies of [(et-Fcpy)(2)Ru(NH(3))(4)](2+) indicated both solvent-tunable E(1/2)(Ru(III/II)) (1 e(-)) and solvent-insensitive E(1/2)(Fe(III/II)) (2 e(-)) redox centers. However, in nitriles, two E(1/2)(Fe(III/II)) peaks were found with DeltaE(1/2)(Fe(III/II) - Fe(III/II)) ranging between 83 and 108 mV at a terminal metal-to-metal distance of up to 15.6 A. Furthermore, the bridging dpi orbital of the ruthenium center mediated efficient end-to-end interaction between the combinations of the terminal Fe(II)-Fe(III)/Fe(III)-Fe(II) pair. To our knowledge, this is the first example of solvent-tunable end-to-end interactions in multimetal complexes.


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Compostos Organometálicos/química , Rutênio/química , Solventes/química , Absorção , Eletroquímica , Metalocenos , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Oxirredução , Piridinas/química , Espectrofotometria Ultravioleta
17.
Inorg Chem ; 47(23): 10921-34, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18975937

RESUMO

Irradiations of the transition metal-to-transition metal charge transfer (MMCT) absorption bands of a series of cyanide-bridged chromium(III)-ruthenium(II) complexes at 77 K leads to near-infrared emission spectra of the corresponding chromium(II)-ruthenium(III) electron transfer excited states. The lifetimes of most of the MMCT excited states increase more than 10-fold when their am(m)ine ligands are perdueterated. These unique emissions have weak, low frequency vibronic sidebands that correspond to the small excited-state distortions in metal-ligand bonds that are characteristic of transition metal electron transfer involving only the non-bonding metal centered d-orbitals suggesting that the excited-state Cr(II) center has a triplet spin configuration. However, most of the electronically excited complexes probably have overall doublet spin multiplicity and exhibit an excitation energy dependent dual emission with the near in energy Cr(III)-centered and MMCT doublet excited states forming an unusual mixed valence pair.

18.
Inorg Chem ; 47(17): 7493-511, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18681425

RESUMO

The 77 K emission spectra of 21 [Ru(L) 4bpy] ( m+ ) complexes for which the Ru/bpy metal-to-ligand-charge-transfer ( (3)MLCT) excited-state energies vary from 12 500 to 18 500 cm (-1) have vibronic contributions to their bandshapes that implicate excited-state distortions in low frequency ( lf; hnu lf < 1000 cm (-1)), largely metal-ligand vibrational modes which most likely result from configurational mixing between the (3)MLCT and a higher energy metal centered ( (3)LF) excited state. The amplitudes of the lf vibronic contributions are often comparable to, or sometimes greater than those of medium frequency ( mf; hnu mf > 1000 cm (-1)), largely bipyridine (bpy) vibrational modes, and for the [Ru(bpy) 3] (2+) and [Ru(NH 3) 4bpy] (2+) complexes they are consistent with previously reported resonance-Raman (rR) parameters. However, far smaller lf vibronic amplitudes in the rR parameters have been reported for [Os(bpy) 3 ] (2+), and this leads to a group frequency approach for interpreting the 77 K emission bandshapes of [Ru(L) 4bpy] ( m+ ) complexes with the vibronic contributions from mf vibrational modes referenced to the [Os(bpy) 3] (2+) rR parameters (OB3 model) and the envelope of lf vibronic components represented by a "progression" in an "equivalent" single vibrational mode ( lf1 model). The lf1 model is referenced to rR parameters reported for [Ru(NH 3) 4bpy] (2+). The observation of lf vibronic components indicates that the MLCT excited-state potential energy surfaces of Ru-bpy complexes are distorted by LF/MLCT excited-state/excited-state configurational mixing, but the emission spectra only probe the region near the (3)MLCT potential energy minimum, and the mixing can lead to larger distortions elsewhere with potential photochemical implications: (a) such distortions may labilize the (3)MLCT excited state; and (b) the lf vibrational modes may contribute to a temperature dependent pathway for nonradiative relaxation.

19.
J Phys Chem B ; 111(24): 6748-60, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17439271

RESUMO

The 77 K emission spectrum of trans-[(ms-Me6[14]aneN4)Cr(CNRu(NH3)5)2]5+ has components characteristic of ligand field (LF) and metal-to-metal charge transfer (MMCT) excited states (ms-Me6[14]aneN4=5,12-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). The LF component of the emission is best resolved for irradiations at appreciably higher energies than the MMCT absorption band, while only the MMCT emission is observed for irradiations on the low-energy side of the MMCT absorption band. The LF emission component from this complex has vibronic structure that is very similar to that of the trans-[(ms-Me6[14]aneN4)Cr(CN)2]+ parent, but it is red-shifted by 560 cm-1 and the bandwidths are much larger. The red shift and the larger bandwidths of the ruthenated complex are attributed to configurational mixing between the LF and MMCT excited states, and the inferred mixing parameters are shown to be consistent with the known electron-transfer properties of the Ru(NH3)5 moieties. The MMCT excited-state lifetime is about 1 micros at 77 K and am(m)ine perdeuteration of this complex leads to an isotope effect of kNH/kND approximately 15-20. However, the contribution of the N-H stretching vibration to the emission sideband is too weak for a single vibrational mode model to be consistent with the observed lifetimes or the isotope effect. These features are very similar to those reported previously (J. Phys. Chem. A 2004, 108, 5041) for the MMCT emission of trans-[([14]aneN4)Cr{CNRu(NH3)5}2]5+ ([14]aneN4=1,4,8,11-tetraazacyclotetradecane), with the exception that the higher energy LF emission was not well resolved in the earlier work. The energies of the charge transfer absorption and emission maxima of both of these Cr(CN)Ru complexes are very similar to those of [Ru(NH3)4bpy]2+, but the latter has a 50-fold shorter 77 K excited-state lifetime, a 10-fold smaller NH/ND isotope effect, and a very different structure of its vibronic sidebands. Thus, the vibronic sidebands imply that the dominant excited-state distortions are in the metal-ligand vibrational modes for the Cr(CN)Ru complexes and in the bipyridine vibrational modes for the [Ru(NH3)4bpy]2+ complex. While an "equivalent" single vibrational mode model based on the frequencies and amplitudes of the dominant distortion modes is not consistent the observed lifetimes, such models do appear to be a good basis for qualitatively distinguishing different classes of excited-state dynamic behavior. A multimode, multichannel model may be necessary to adequately describe the excited-state dynamics of these simple electron-transfer systems.

20.
J Phys Chem B ; 119(24): 7393-406, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25761649

RESUMO

The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa