Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1887-1893, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205793

RESUMO

Despite wide studies demonstrating the versatility of the metal oxide-zeolite (OXZEO) catalyst concept to tackle the selectivity challenge in syngas chemistry, the active sites of metal oxides and the mechanism of CO/H2 activation remain to be elucidated. Herein, we demonstrate experimentally the role of Cr in zinc-chromium oxides and unveil visually, for the first time, the active sites for CO activation employing scanning transmission electron microscopy-electron energy loss spectroscopy using the volumetric density of surface carbon species as a descriptor. The ZnCr2O4 spinel surface with atomic ZnOx overlayer is the most active site for C-O bond dissociation, particularly at the narrow ZnCr2O4(110) facets constrained between the (311) and (111) facets, followed by the Cr-doped wurtzite ZnO surface. In comparison, the surfaces of ZnCr2O4 with aggregated ZnOx overlayers, pure ZnO, and the stoichiometric ZnCr2O4 exhibit a significantly lower activity. In situ synchrotron-based vacuum ultraviolet photoionization mass spectrometric study on different temperature programmed surface reactions with isotopes of C18O, 13CO, and D2 validates direct CO dissociation over ZnCrn oxides in CO, forming CH2 and further to hydrocarbons if H2 is present and CH2CO intermediates in syngas. The activity of CO dissociation and hydrogenation over ZnCrn oxides correlates well with the syngas-to-light-olefins activity of ZnCrn-SAPO-18 composite catalysts as a function of the Cr/Zn ratio.

2.
Small ; : e2402278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822712

RESUMO

The rapid proliferation of power sources equipped with lithium-ion batteries poses significant challenges in terms of post-scrap recycling and environmental impacts, necessitating urgent attention to the development of sustainable solutions. The cathode direct regeneration technologies present an optimal solution for the disposal of degraded cathodes, aiming to non-destructively re-lithiate and straightforwardly reuse degraded cathode materials with reasonable profits and excellent efficiency. Herein, a potential-regulated strategy is proposed for the direct recycling of degraded LiFePO4 cathodes, utilizing low-cost Na2SO3 as a reductant with lower redox potential in the alkaline systems. The aqueous re-lithiation approach, as a viable alternative, not only enables the re-lithiation of degraded cathode while ignoring variation in Li loss among different feedstocks but also utilizes the rapid sintering process to restore the cathode microstructure with desirable stoichiometry and crystallinity. The regenerated LiFePO4 exhibits enhanced electrochemical performance with a capacity of 144 mA h g-1 at 1 C and a high retention of 98% after 500 cycles at 5 C. Furthermore, this present work offers considerable prospects for the industrial implementation of directly recycled materials from lithium-ion batteries, resulting in improved economic benefits compared to conventional leaching methods.

3.
Small ; : e2311782, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497813

RESUMO

With the development of electric vehicles, exploiting anode materials with high capacity and fast charging capability is an urgent requirement for lithium-ion batteries (LIBs). Borophene, with the merits of high capacity, high electronic conductivity and fast diffusion kinetics, holds great potential as anode for LIBs. However, it is difficult to fabricate for the intrinsic electron-deficiency of boron atom. Herein, heterogeneous-structured MoB2 (h-MoB2 ) with amorphous shell and crystalline core, is prepared by solid phase molten salt method. As demonstrated, crystalline core can encapsulate the honeycomb borophene within two adjacent Mo atoms, and amorphous shell can accommodate more lithium ions to strengthen the lithium storage capacity and diffusion kinetics. According to theoretical calculations, the lithium adsorption energy in MoB2 is about -2.7 eV, and the lithium diffusion energy barrier in MoB2 is calculated to be 0.199 eV, guaranteeing the enhanced adsorption capability and fast diffusion kinetic behavior of Li+ ions. As a result, h-MoB2 anode presents high capacity of 798 mAh g-1 at 0.1 A g-1 , excellent rate performance of 183 mAh g-1 at 5 A g-1 and long-term cyclic stability for 1200 cycles. This work may inspire ideas for the fabrication of borophene analogs and two-dimensional metal borides.

4.
Small ; : e2309412, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342678

RESUMO

Ammonium vanadates, featuring an N─H···O hydrogen bond network structure between NH4 + and V─O layers, have become popular cathode materials for aqueous zinc-ion batteries (AZIBs). Their appeal lies in their multi-electron transfer, high specific capacity, and facile synthesis. However, a major drawback arises as Zn2+ ions tend to form bonds with electronegative oxygen atoms between V─O layers during cycling, leading to irreversible structural collapse. Herein, Li+ pre-insertion into the intermediate layer of NH4 V4 O10 is proposed to enhance the electrochemical activity of ammonium vanadate cathodes for AZIBs, which extends the interlayer distance of NH4 V4 O10 to 9.8 Å and offers large interlaminar channels for Zn2+ (de)intercalation. Moreover, Li+ intercalation weakens the crystallinity, transforms the micromorphology from non-nanostructured strips to ultrathin nanosheets, and increases the level of oxygen defects, thus exposing more active sites for ion and electron transport, facilitating electrolyte penetration, and improving electrochemical kinetics of electrode. In addition, the introduction of Li+ significantly reduces the bandgap by 0.18 eV, enhancing electron transfer in redox reactions. Leveraging these unique advantages, the Li+ pre-intercalated NH4 V4 O10 cathode exhibits a high reversible capacity of 486.1 mAh g-1 at 0.5 A g-1 and an impressive capacity retention rate of 72% after 5,000 cycles at 5 A g-1 .

5.
Small ; 20(22): e2311209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098342

RESUMO

Two-dimensional (2D) materials are promising successors for silicon transistor channels in ultimately scaled devices, necessitating significant research efforts to study their behavior at nanoscopic length scales. Unfortunately, current research has limited itself to direct patterning approaches, which limit the achievable resolution to the diffraction limit and introduce unwanted defects into the 2D material. The potential of multi-patterning to fabricate 2D materials features with unprecedented precision and low complexity at large scale is demonstrated here. By combining lithographic patterning of a mandrel and bottom-up self-expansion, this approach enables pattern resolution one order of magnitude below the lithographical resolution. In-depth characterization of the self-expansion double patterning (SEDP) process reveals the ability to manipulate the critical dimension with nanometer precision through a self-limiting and temperature-controlled oxidation process. These results indicate that the SEDP process can regain the quality and morphology of the 2D material, as shown by high-resolution microscopy and optical spectroscopy. This approach is shown to open up new avenues for research into high-performance, ultra-scaled 2D materials devices for future electronics.

6.
Mol Carcinog ; 63(6): 1160-1173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695641

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, with an escalating incidence rate and a notable potential (up to 5%) for metastasis. Ultraviolet radiation (UVA and UVB) exposure is the primary risk factor for cSCC carcinogenesis, with literature suggesting ultraviolet radiation (UVR) promotes vascular endothelial growth factor A (VEGFA) expression. This study aims to investigate UVR-induced upregulation of VEGFA and explore combination therapeutic strategies. The skin squamous cell carcinoma cell line A431 was exposed to specific durations of ultraviolet radiation. The effect of emodin on ATR/SerRS/VEGFA pathway was observed. The cell masses were also transplanted subcutaneously into mice (n = 8). ATR inhibitor combined with emodin was used to observe the growth and angiogenesis of the xenografts. The results showed that UV treatment significantly enhanced the phosphorylation of SerRS and the expression level of VEGFA in A431 cells (p < 0.05). Treatment with emodin significantly inhibited this expression (p < 0.05), and the combination of emodin and ATR inhibitor further enhanced the inhibitory effect (p < 0.05). This phenomenon was further confirmed in the xenograft model, which showed that the combination of ATR inhibitor and emodin significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.05), thus showing an inhibitory effect on cSCC. This study innovatively reveals the molecular mechanism of UV-induced angiogenesis in cSCC and confirms SerRS as a novel target to inhibit cSCC angiogenesis and progression in vitro and in vivo studies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma de Células Escamosas , Neovascularização Patológica , Neoplasias Cutâneas , Raios Ultravioleta , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/tratamento farmacológico , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Emodina/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Angiogênese
7.
J Phys Chem A ; 128(1): 152-162, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38145416

RESUMO

The removal of carbonyl sulfide (COS) commonly contained in natural gas is of great significance but still very challenging via a widely employed absorption process due to its low reactivity and solubility in various commercial solvents. Artificial intelligence (AI) is playing an increasingly important role in the exploration of desulfurization solvents. However, practically feasible AI models still lack a thorough understanding of the reaction mechanisms. Machine learning (ML) models established on chemical mechanisms exhibit enhanced chemical interpretability and prediction performance. In this study, we constructed a series of solvent molecules with varying functional groups, including linear aliphatic amines, cyclic aliphatic amines, and aromatic amines and proposed a three-step reaction pathway to dissect the effects of charge and steric hindrance of different substituents on their reaction rates with COS. Chemical descriptors, based on electrostatic potential (ESP), average local ionization energy (ALIE) theory, Hirshfeld charges, and Fukui functions, were used to correlate and predict the electrophilic reactivity of amine groups with COS. Substituents influence the reaction rate by changing the attraction interaction of amine groups to COS molecules and the electron rearrangement in the electrophilic reaction. Furthermore, they have more pronounced steric effects on the reaction rate in the linear amines. The descriptors N_ALIE and q(N) were found to be crucial in predicting the reactivity of amine groups with COS. Present study provides a comprehensive understanding of the reaction mechanisms of COS with amine compounds, offers specific chemical principles for the development of chemistry-driven ML models, sheds light on other types of electrophilic reactions occurring on amine and phosphine groups, and guides the development of chemical solvents in gas absorption processes.

8.
Nature ; 560(7720): 666-670, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135577

RESUMO

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Assuntos
Receptores Frizzled/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Via de Sinalização Wnt
9.
Eur Spine J ; 33(3): 881-891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342843

RESUMO

BACKGROUND CONTEXT: Lumbar spinal stenosis is one of the most common diseases affecting the elderly that is characterized by the narrowing of the spinal canal and peripheral neural pathways which may cause back pain and neurogenic intermittent claudication in affected patients. Recently, as an alternative treatment between conservative therapy and decompression surgery, interspinous process device (IPD) such as X-stop, Coflex, DIAM, Aperius, Wallis, etc., has gained enough popularity. PURPOSE: The purpose of this study was to evaluate the efficacy and safety of IPD in the treatment of degenerative lumbar spinal stenosis compared with decompression surgery. STUDY DESIGN: This study was a systematic review and meta-analysis of randomized controlled trials. PATIENT SAMPLE: 555 patients' samples were collected for this study. OUTCOME MEASURES: The Visual Analogue Scale and the Oswestry Disability Index were analyzed, as well as the Zurich Claudication Questionnaire For efficacy evaluation. Complication and reoperation rate was utilized for the assessment of safety. METHODS: A comprehensive literature search was performed through Pubmed, EMBASE, Web of Science, and Cochrane Library until October 2023. Among the studies meeting the eligible criteria, any study in which IPD was utilized in the treatment of degenerative lumbar spinal stenosis was included in the current review. For efficacy evaluation, the Visual Analogue Scale and the Oswestry Disability Index were analyzed, as well as the Zurich Claudication Questionnaire. Complication and reoperation rates were utilized for the assessment of safety. RESULTS: Five randomized controlled trials with 555 patients were included. There were no significant differences in VAS leg pain (SMD - 0.08, 95% CI - 0.32 to 0.15) and back pain (SMD 0.09, 95%CI-0.27 to 0.45), ODI scores (MD 1.08, 95% CI - 11.23 to 13.39) and ZCQ physical function (MD-0.09, 95% CI-0.22 to 0.05) for IPD compared with decompression surgery. In terms of ZCQ symptom severity (MD - 0.22, 95% CI - 0.27 to - 016), decompression surgery showed superior to the IPD. As for complications (RR 1.08, 95% CI 0.36 to 3.27), the IPD had no advantages compared to decompression surgery, whereas inferior to it in reoperation rate (RR 2.58, 95% CI 1.67 to 3.96). CONCLUSIONS: This systematic review and meta-analysis indicated no superiority in the clinical outcome for IPD compared with decompression surgery. However, more clinical studies are warranted to determine the efficacy and safety of IPD.


Assuntos
Estenose Espinal , Humanos , Idoso , Estenose Espinal/complicações , Estenose Espinal/cirurgia , Descompressão Cirúrgica/efeitos adversos , Vértebras Lombares/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto , Dor nas Costas/cirurgia , Resultado do Tratamento
10.
Genomics ; 115(4): 110646, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37217085

RESUMO

OBJECTIVE: This study aims to dissect impacts of exosomes-delivered PD-L1 and CTLA-4 siRNAs on colorectal cancer (CRC) progression and immune responses. METHODS: Exosomes containing PD-L1 siRNA and CTLA-4 siRNA were prepared and utilized to treat CRC cells to evaluate their effects. A tumor-bearing mouse model was established for verification. RESULTS: Exosomes containing PD-L1 siRNA and CTLA-4 siRNA repressed malignant features of CRC cells and restrained tumor growth and activated tumor immune responses in vivo. Co-culture of CRC cells treated with exosomes containing PD-L1 siRNA and CTLA-4 siRNA with human CD8+ T cells increased the percentage of CD8+ T cells, decreased the apoptotic rate of CD8+ T cells, elevated IL-2, IFN-γ, and TNF-α expression in cell supernatants, reduced adherent density of CRC cells, augmented the positive rate of CRC cells, and subdued tumor immune escape. CONCLUSION: Exosomes containing PD-L1 siRNA and CTLA-4 siRNA suppressed CRC progression and enhanced tumor immune responses.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , RNA Interferente Pequeno/genética , Evasão Tumoral , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , RNA de Cadeia Dupla
11.
J Craniofac Surg ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830018

RESUMO

There is currently a lack of scientific bibliometric analyses in the field of Pierre Robin sequence (PRS). Pierre Robin sequence is known for its clinical triad of micrognathia, glossoptosis, airway obstruction, and possible secondary cleft palate. These defects can lead to upper airway obstruction, sleep apnea, feeding difficulties, affect an individual's growth and development, education level, and in severe cases can be life-threatening. Through analysis of literature retrieved from the Web of Science Core Collection (WoSCC) database using Results Analysis and Citation Report and Citespace software, 933 original articles and reviews were included after manual screening. The overall trend for the number of annual publications and citations was increasing. On the basis of the analysis, airway evaluation and treatment, mandibular distraction osteogenesis (MDO), as well as descriptions of PRS characteristics have been the focus of research in this field. In addition, with advances in new technologies such as gene sequencing and expanding understanding of diseases among researchers, research on genetics and etiology related to PRS has become a growing trend.

12.
BMC Oral Health ; 24(1): 169, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308306

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory condition triggered by immune system malfunction. Mitochondrial extracellular vesicles (MitoEVs) are a group of highly heterogeneous extracellular vesicles (EVs) enriched in mitochondrial fractions. The objective of this research was to examine the correlation between MitoEVs and the immune microenvironment of periodontitis. METHODS: Data from MitoCarta 3.0, GeneCards, and GEO databases were utilized to identify differentially expressed MitoEV-related genes (MERGs) and conduct functional enrichment and pathway analyses. The random forest and LASSO algorithms were employed to identify hub MERGs. Infiltration levels of immune cells in periodontitis and healthy groups were estimated using the CIBERSORT algorithm, and phenotypic subgroups of periodontitis based on hub MERG expression levels were explored using a consensus clustering method. RESULTS: A total of 44 differentially expressed MERGs were identified. The random forest and LASSO algorithms identified 9 hub MERGs (BCL2L11, GLDC, CYP24A1, COQ2, MTPAP, NIPSNAP3A, FAM162A, MYO19, and NDUFS1). ROC curve analysis showed that the hub gene and logistic regression model presented excellent diagnostic and discriminating abilities. Immune infiltration and consensus clustering analysis indicated that hub MERGs were highly correlated with various types of immune cells, and there were significant differences in immune cells and hub MERGs among different periodontitis subtypes. CONCLUSION: The periodontitis classification model based on MERGs shows excellent performance and can offer novel perspectives into the pathogenesis of periodontitis. The high correlation between MERGs and various immune cells and the significant differences between immune cells and MERGs in different periodontitis subtypes can clarify the regulatory roles of MitoEVs in the immune microenvironment of periodontitis. Future research should focus on elucidating the functional mechanisms of hub MERGs and exploring potential therapeutic interventions based on these findings.


Assuntos
Vesículas Extracelulares , Humanos , Aprendizado de Máquina , Algoritmos , Análise por Conglomerados , Biologia Computacional
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 411-417, 2024 Mar 20.
Artigo em Zh | MEDLINE | ID: mdl-38645840

RESUMO

Objective: To analyze the effect of additional surgery on the survival and prognosis of high-risk T1 colorectal cancer patients who have undergone endoscopic resection. Methods: The clinical data of patients with high-risk T1 colorectal cancer were retrospectively collected. The patients were divided into the endoscopic resection (ER) plus additional surgical resection (SR) group, or the ER+SR group, and the ER group according to whether additional SR were performed after ER. Baseline data of the patients and information on the location, size, and postoperative pathology of the lesions were collected. Patient survival-related information was obtained through the medical record system and patient follow-up. The primary outcome indicators were the overall survival and the colorectal cancer-specific survival. Univariate Cox regression analysis was used to screen survival-related risk factors and hazard ratio (HR) was calculated. Multivariate Cox regression analysis was used to analyze the independent influencing factors. Results: The data of 109 patients with T1 high-risk colorectal cancer were collected, with 52 patients in the ER group and 57 patients in the ER+SR group. The mean age of patients in the ER group was higher than that in the ER+SR group (65.21 years old vs. 60.54 years old, P=0.035), and the median endoscopic measurement of the size of lesions in the ER group was slightly lower than that in the ER+SR group (2.00 cm vs. 2.50 cm, P=0.026). The median follow-up time was 30.00 months, with the maximum follow-up time being 119 months, in the ER+SR group and there were 4 patients deaths, including one colorectal cancer-related death. Whereas the median follow-up time in the ER group was 28.50 months, with the maximum follow-up time being 78.00 months, and there were 4 patient deaths, including one caused by colorectal cancer. The overall 5-year cumulative survival rates in the ER+SR group and the ER group were 94.44% and 81.65%, respectively, and the cancer-specific 5-year cumulative survival rates in the ER+SR group and the ER group were 97.18% and 98.06%, respectively. The Kaplan-Meier analysis showed no significant difference in the overall cumulative survival or cancer-specific cumulative survival between the ER+SR and the ER groups. Univariate Cox regression analysis showed that age and the number of reviews were the risk factors of overall survival (HR=1.16 and HR=0.27, respectively), with age identified as an independent risk factor of overall survival in the multivariate Cox regression analysis (HR=1.10, P=0.045). Conclusion: For T1 colorectal cancer patients with high risk factors after ER, factors such as patient age and their personal treatment decisions should not be overlooked. In clinical practice, additional caution should be exercised in decision-making concerning additional surgery.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Estudos Retrospectivos , Feminino , Masculino , Prognóstico , Idoso , Pessoa de Meia-Idade , Fatores de Risco , Taxa de Sobrevida , Modelos de Riscos Proporcionais
14.
Small ; 19(19): e2206932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807515

RESUMO

Optical anisotropy, which is quantified by birefringence (Δn) and linear dichroism (Δk), can significantly modulate the angle-resolved polarized Raman spectroscopy (ARPRS) response of anisotropic layered materials (ALMs) by external interference. This work studies the separate modulation of birefringence on the ARPRS response and the intrinsic response by selecting transparent birefringent crystal α-MoO3 as an excellent platform. It is found that there are several anomalous ARPRS responses in α-MoO3 that cannot be reproduced by the real Raman tensor widely used in non-absorbing materials; however, they can be well explained by considering the birefringence-induced Raman selection rules. Moreover, the systematic thickness-dependent study indicates that birefringence modulates the ARPRS response to render an interference pattern; however, the amplitude of modulation is considerably lower than that by linear dichroism as occurred in black phosphorous. This weak modulation brings convenience to the crystal orientation determination of transparent ALMs. Combining the atomic vibrational pattern and bond polarizability model, the intrinsic ARPRS response of α-MoO3 is analyzed, giving the physical origins of the Raman anisotropy. This study employs α-MoO3 as an example, although it is generally applicable to all transparent birefringent ALMs.

15.
Small ; 19(50): e2304002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621029

RESUMO

Sodium superionic conductor (NASICON)-type Na3 V2 (PO4 )3 has attracted considerable interest owing to its stable three-dimensional framework and high operating voltage; however, it suffers from a low-energy density due to the poor intrinsic electronic conductivity and limited redox couples. Herein, the partial substitution of Mn3+ for V3+ in Na3 V2 (PO4 )3 is proposed to activate V4+ /V5+ redox couple for boosting energy density of the cathodes (Na3 V2- x Mnx (PO4 )3 ). With the introduction of Mn3+ into Na3 V2 (PO4 )3 , the band gap is significantly reduced by 1.406 eV and thus the electronic conductivity is greatly enhanced. The successive conversions of four stable oxidation states (V2+ /V3+ , V3+ /V4+ , and V4+ /V5+ ) are also successfully achieved in the voltage window of 1.4-4.0 V, corresponding to three electrons involved in the reversible reaction. Consequently, the cathode with x = 0.5 exhibits a high reversible discharge capacity of 170.9 mAh g-1 at 0.5 C with an ultrahigh energy density of 577 Wh kg-1 . Ex-situ x-ray diffraction (XRD) analysis reveals that the sodium-storage mechanism for Mn-doped Na3 V2 (PO4 )3 consists of single-phase and bi-phase reactions. This work deepens the understanding of the activation of reversible three-electron reaction in NASICON-structured polyanionic phosphates and provides a feasible strategy to develop high-energy-density cathodes for sodium-ion batteries.

16.
Small ; 19(52): e2303906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649229

RESUMO

Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their low cost and environmental friendliness. However, the rampant dendrite growth and severe side reactions during plating/stripping on the surface of zinc (Zn) anode hinder the practicability of AZIBs. Herein, an effective and non-toxic cationic electrolyte additive of Rb2 SO4 is proposed to address the issues. The large cation of Rb+ is preferentially adsorbed on the surface of Zn metal to induce a strong shielding effect for realizing the lateral deposition of Zn2+ ions along the Zn surface and isolating water from Zn metal to effectively inhibit side reactions. Consequently, the Zn||Zn symmetric cell with the addition of 1.5 mm Rb2 SO4 can cycle more than 6000 h at 0.5 mA cm-2 /0.25 mAh cm-2 , which is 20 times longer than that without Rb2 SO4 . Besides, the Zn||Cu asymmetric cell with Rb2 SO4 achieves a very high average Coulombic efficiency of 99.16% up to 500 cycles. Moreover, the electrolyte with Rb2 SO4 well matches with the VO2 cathode, achieving high initial capacity of 412.7 mAh g-1 at 5 A g-1 and excellent cycling stability with a capacity retention of 71.6% at 5 A g-1 after 500 cycles for the Zn//VO2 full cell.

17.
Small ; 19(42): e2303642, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323120

RESUMO

Nickel sulfides with high theoretical capacity are considered as promising anode materials for sodium-ion batteries (SIBs); however, their intrinsic poor electric conductivity, large volume change during charging/discharging, and easy sulfur dissolution result in inferior electrochemical performance for sodium storage. Herein, a hierarchical hollow microsphere is assembled from heterostructured NiS/NiS2 nanoparticles confined by in situ carbon layer (H-NiS/NiS2 @C) via regulating the sulfidation temperature of the precursor Ni-MOFs. The morphology of ultrathin hollow spherical shells and confinement of in situ carbon layer to active materials provide rich channels for ion/electron transfer and alleviate the effects of volume change and agglomeration of the material. Consequently, the as-prepared H-NiS/NiS2 @C exhibit superb electrochemical properties, satisfactory initial specific capacity of 953.0 mA h g-1 at 0.1 A g-1 , excellent rate capability of 509.9 mA h g-1 at 2 A g-1 , and superior longtime cycling life with 433.4 mA h g-1 after 4500 cycles at 10 A g-1 . Density functional theory calculation shows that heterogenous interfaces with electron redistribution lead to charge transfer from NiS to NiS2 , and thus favor interfacial electron transport and reduce ion-diffusion barrier. This work provides an innovative idea for the synthesis of homologous heterostructures for high-efficiency SIB electrode materials.

18.
J Transl Med ; 21(1): 293, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121999

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. METHODS: A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. RESULTS: PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. CONCLUSION: This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Sepse , Animais , Camundongos , Antígenos CD59 , Ciclo-Oxigenase 2 , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Sepse/complicações , Fator 2 Ativador da Transcrição
19.
Gastrointest Endosc ; 97(6): 1016-1030.e14, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863572

RESUMO

BACKGROUND AND AIMS: Patients with T1 colorectal cancer (CRC) are at high risk for lymph node metastasis and recurrence after local resection (LR) and need surgical resection (SR) for additional lymph node dissection to improve prognosis. However, the net benefits of SR and LR are still unquantified. METHODS: We conducted a systematic search for studies in which survival analysis among high-risk T1 CRC patients undergoing LR and SR was performed. Overall survival (OS), recurrence-free survival (RFS), and disease-specific survival (DSS) data were extracted. Hazard ratios (HRs) and fitted survival curves for OS, RFS, and DSS were used to estimate the long-term clinical outcomes of patients in the 2 groups. RESULTS: This meta-analysis included 12 studies. Compared with those in the SR group, patients in the LR group had higher risks of death (HR, 2.06; 95% confidence interval [CI], 1.59-2.65), recurrence (HR, 3.51; 95% CI, 2.51-4.93), and cancer-related mortality (HR, 2.31; 95% CI, 1.17-4.54) in the long term. Fitted survival curves for the LR and SR groups revealed the 5-year, 10-year, and 20-year rates for OS (86.3% and 94.5%, 72.9% and 84.4%, and 61.8% and 71.1%), RFS (89.9% and 96.9%, 83.3% and 93.9%, and 29.6% and 90.8%), and DSS (96.7% and 98.3%, 86.9% and 97.1%, and 86.9% and 96.4%). Log-rank tests showed significant differences among all outcomes except 5-year DSS. CONCLUSIONS: For high-risk T1 CRC patients, the net benefit of DSS appears to be significant when the observation period exceeds 10 years. A long-term net benefit may exist but may not be applicable to all patients, especially high-risk patients with comorbidities. Therefore, LR may be a reasonable alternative for individualized treatment for some high-risk T1 CRC patients.


Assuntos
Neoplasias Colorretais , Excisão de Linfonodo , Humanos , Prognóstico , Análise de Sobrevida , Metástase Linfática , Recidiva Local de Neoplasia/patologia , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia
20.
Proc Natl Acad Sci U S A ; 117(32): 19487-19496, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723820

RESUMO

Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Ferro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa