Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(3): 944-955, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947292

RESUMO

Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype-environment and genotype-phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.


Assuntos
Pinus sylvestris , Pinus , Humanos , Pinus sylvestris/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Melhoramento Vegetal , Pinus/genética , DNA Intergênico
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243850

RESUMO

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Assuntos
Lagartos , Melaninas , Animais , Melaninas/genética , Lagartos/genética , Peixe-Zebra , Regulação da Temperatura Corporal/genética , Pigmentação da Pele/genética , Cor
3.
J Virol ; : e0118324, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230303

RESUMO

Dengue virus (DENV) gains genetic mutations during continuous transmission and evolution, making the virus more adaptive and virulent. The clade of DENV-1 genotype I has expanded and become the predominant genotype in Asia and the Pacific areas, but the underlying mechanisms are unclear. A combined analysis of nonsynonymous mutations in domain III of the envelope protein and their biological effects on virus pathogenesis and transmission was evaluated. Phylogenetic analyses found three nonsynonymous mutations (V324I, V351L, and V380I) in domain III of the envelope protein, which emerged in 1970s-1990s and stably inherited and expanded in contemporary strains after 2000. We generated reverse-mutated viruses (I324V, L351V, and I380V) based on an infectious clone of an epidemic DENV-1 strain (NIID02-20), and the results suggested that the infectivity of the contemporary epidemic virus (wild type, WT) has increased compared to the reverse mutant viruses in mammalian hosts but not mosquito vectors. The WT virus showed a higher binding affinity to host cells and increased virion stability. In addition, weaker immunogenicity and higher resistance to neutralizing antibodies of the WT virus indicated a trend of immune escape. The data suggested that nonsynonymous mutations of the E protein (V324I, V351L, and V380I) promote infectivity and immune evasion of DENV-1 genotype I, which may facilitate its onward transmission on a global scale. IMPORTANCE: We provide evidence that minor sequence variation among dengue virus (DENV) strains can result in increased adaptability and virulence, impacting both the biology of the virus and the antiviral immune response. The genetic mutations of DENV-1 gained during continuous transmission and evolution will offer new clues for the design of novel vaccines against flaviviruses.

4.
Hepatology ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302977

RESUMO

BACKGROUND AND AIMS: Hyperactivated inflammatory responses induced by cytokine release syndrome (CRS) are the primary causes of tissue damage and even death. The translation process is precisely regulated to control the production of proinflammatory cytokines. However, it is largely unknown whether targeting translation can effectively limit the hyperactivated inflammatory responses during acute hepatitis and graft-versus-host disease (GVHD). APPROACH AND RESULTS: By using in vitro translation and cellular overexpression systems, we have found that the non-structural protein gene NS2A of Zika virus (ZIKV) functions as RNA molecules to suppress the translation of both ectopic genes and endogenous proinflammatory cytokines. Mechanistically, results from RNA pulldown and co-immunoprecipitation (Co-IP) assays have demonstrated that NS2A RNA interacts with the translation initiation factor eIF2α to disrupt the dynamic balance of the eIF2/eIF2B complex and translation initiation, which is the rate-limiting step during the translation process. In the acetaminophen (APAP)-, LPS/D-galactosamine (D-GalN)-, viral infection-induced acute hepatitis, and GVHD mouse models, mice with myeloid cell-specific knock-in of NS2A show decreased levels of serum proinflammatory cytokines and reduced tissue damage. CONCLUSIONS: ZIKV NS2A dampens the production of proinflammatory cytokines and alleviates inflammatory injuries by interfering translation process as RNA molecules, which suggests that NS2A RNA is potentially used to treat numerous acute inflammatory diseases characterized by CRS.

5.
J Cell Mol Med ; 28(1): e17983, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070189

RESUMO

Gastric cancer results in great cancer mortality worldwide, and inducing ferroptosis dramatically improves the malignant phenotypes of gastric cancer. DNA polymerase epsilon subunit 2 (POLE2) plays indispensable roles in tumorigenesis; however, its involvement and molecular basis in ferroptosis and gastric cancer are not clear. Human gastric cancer cells were infected with lentiviral vectors to knock down or overexpress POLE2, and cell ferroptosis was detected. To further validate the involvement of nuclear factor erythroid 2-related factor 2 (NRF2) and glutathione peroxidase 4 (GPX4), lentiviral vectors were used. POLE2 expression was elevated in human gastric cancer cells and tissues and closely correlated with clinicopathological features in gastric cancer patients. POLE2 knockdown was induced, while POLE2 overexpression inhibited ferroptosis of human gastric cancer cells, thereby modulating the malignant phenotypes of gastric cancer. Mechanistic studies revealed that POLE2 overexpression elevated NRF2 expression and activity and subsequently activated GPX4, which then prevented lipid peroxidation and ferroptosis in human gastric cancer cells. In contrast, either NRF2 or GPX4 silence significantly prevented POLE2 overexpression-mediated inductions of cell proliferation, migration, invasion and inhibition of ferroptosis. POLE2 overexpression inhibits ferroptosis in human gastric cancer cells through activating NRF2/GPX4 pathway, and inhibiting POLE2 may be a crucial strategy to treat gastric cancer.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Lentivirus , Fator 2 Relacionado a NF-E2 , Nucleotidiltransferases , Subunidades Proteicas
6.
Anal Chem ; 96(33): 13576-13587, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39102235

RESUMO

Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.


Assuntos
Glucuronídeos , Marcação por Isótopo , Humanos , Glucuronídeos/urina , Glucuronídeos/metabolismo , Glucuronídeos/química , Espectrometria de Massas em Tandem/métodos , Neoplasias Colorretais/urina , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo
7.
J Gene Med ; 26(3): e3667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442944

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer with relatively high mortality worldwide. Serine peptidase inhibitor Kazal-type 5 (SPINK5) is reported to be downregulated in ESCC. However, its explicit role in ESCC remains further investigation. METHODS: The tumor tissues and adjacent non-cancerous tissues were obtained from 196 patients with ESCC for the determination of SPINK5 mRNA levels. Additionally, the relationship between SPINK5 mRNA levels and clinicopathological features of ESCC patients was explored. The effects of SPINK5 on the invasion and migration of ESCC cells were assessed using Transwell assays. Furthermore, SPINK5 mRNA and LEKTI protein were measured in ESCC cell lines after treatment with poly (I:C), lipopolysaccharide (LPS) or unmethylated CpG DNA. Moreover, the correlation between expression of SPINK5 and nuclear factor-kappa B (NF-κB) signaling pathway-related genes was analyzed in the TCGA-ESCC cohort, and the effects of SPINK5 on NF-κB transcription was analyzed using a luciferase reporter gene assay. Finally, the correlations between SPINK5 and infiltration of immune cells, immune scores, stromal scores and ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores were explored. RESULTS: SPINK5 mRNA levels were downregulated in tumor tissues, which was significantly correlated with higher lymph node metastases. Overexpressed SPINK5 inhibited cell invasion and migration in ESCC cell lines. Mechanistically, LPS-induced activation of Toll-like receptor 4 (TLR4) decreased SPINK5 mRNA and LEKTI in KYSE150 and KYSE70 cells. Spearman correlation analysis revealed that SPINK5 mRNA was significantly negatively correlated with a total of seven NF-κB signaling pathway-related genes in TCGA-ESCC patients. Moreover, downregulation of SPINK5 increased and upregulation of SPINK5 decreased the activity of the NF-κB promoter in HEK293T cells. Finally, immune cells infiltration analysis revealed that SPINK5 was significantly correlated with the infiltration of various immune cells, stromal scores, immune scores and ESTIMATE scores. CONCLUSIONS: SPINK5 plays critical roles in the TLR4/NF-κB pathway and immune cells infiltration, which might contribute to the ESCC metastasis. The findings of the present study may provide a promising biomarker for the diagnosis and treatment of esophageal squamous cell carcinoma.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Inibidor de Serinopeptidase do Tipo Kazal 5 , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Células HEK293 , Lipopolissacarídeos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
Small ; : e2403151, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934338

RESUMO

Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.

9.
Small ; : e2403397, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925625

RESUMO

To explore novel electrode materials with in-depth elucidation of initial coulombic efficiency (ICE), kinetics, and charge storage mechanisms is of great challenge for Na-ion storage. Herein, a novel 3D antiperovskite carbide Ni3ZnC0.7@rGO anode coupled with ether-based electrolyte is reported for fast Na-ion storage, exhibiting superior performance than ester-based electrolyte. Electrochemical tests and density functional theory (DFT) calculations show that Ni3ZnC0.7@rGO anode with ether-based electrolyte can promote charge/ion transport and lower Na+ diffusion energy barrier, thereby improving ICE, reversible capacity, rate, and cycling performance. Cross-sectional-morphology and depth profiling surface chemistry demonstrate that not only a thinner and more homogeneous reaction interface layer with less side effects but also a superior solid electrolyte interface (SEI) film with a high proportion of inorganic components are formed in the ether-based electrolyte, which accelerates Na+ transport and is the significant reason for the improvement of ICE and other electrochemical properties. Meanwhile, electrochemical and ex situ measurements have revealed conversion, alloying, and co-intercalation hybrid mechanisms of the Ni3ZnC0.7@rGO anode based on ether electrolyte. Interestingly, the Na-ion capacitors (SICs) designed by pairing with activated carbon (AC) cathode exhibit favorable electrochemical performance. Overall, this work provides deep insights on developing advanced materials for fast Na-ion storage.

10.
Small ; : e2402338, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924259

RESUMO

A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.

11.
J Transl Med ; 22(1): 517, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816735

RESUMO

BACKGROUND: Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS: The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS: CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION: CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Exossomos , Neoplasias Hepáticas , MicroRNAs , Neovascularização Patológica , Compostos de Fenilureia , Piridinas , RNA Circular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Exossomos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neovascularização Patológica/genética , Animais , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Piridinas/farmacologia , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Camundongos , Camundongos Endogâmicos BALB C , Feminino , Sequência de Bases , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pessoa de Meia-Idade , Angiogênese
12.
Artigo em Inglês | MEDLINE | ID: mdl-39042333

RESUMO

PURPOSE: PSMA/PET has been increasingly used to detect PCa, and PSMA/PET-guided biopsy has shown promising results. However, it cannot be confirmed immediately whether the tissues are the targeted area. In this study, we aimed to develop a novel probe, [123I]I-PSMA-7. First, we hope that [123I]I-PSMA-7 can provide instant confirmation for prostate biopsy. Second, we hope it will help detect PCa. METHODS: We synthesized a high-affinity probe, [123I]I-PSMA-7, and evaluated its properties. We included ten patients with suspected PCa and divided them into two groups. The injection and biopsy were approximately 24 h apart. The activity in biopsy lesions was measured as the cpm by a γ-counter. Moreover, we enrolled 3 patients to evaluate the potential of [123I]I-PSMA-7 for detecting PCa. RESULTS: Animal experiments verified the safety, targeting and effectiveness of [123I]I-PSMA-7, and the tumor-to-muscle ratio was greatest at 24 h, which confirmed the results of this study in humans. After injection of 185MBq [123I]I-PSMA-7, 18/55 cores were positive, and the cpm was significantly greater (4345 ± 3547 vs. 714 ± 547, P < 0.001), with an AUC of 0.97 and a cutoff of 1312 (sens/spec of 94.40%/91.90%). At a lower dose, 10/55 biopsy cores were cancerous, and the cpm was 2446 ± 1622 vs. 153 ± 112 (P < 0.001). The AUC was 1, with a cutoff value of 490 (sens/spec of 100%). When the radiopharmaceuticals were added to 370 MBq, we achieved better SPECT/CT imaging. CONCLUSION: With the aid of [123I]I-PSMA-7 and via cpm-based biopsy, we can reduce the number of biopsies to a minimum operation. [123I]I-PSMA-7 PSMA SPECT/CT can also provide good imaging results. TRIAL REGISTRATION: Chinese Clinical trial registry ChiCTR2300069745, Registered 24 March 2023.

13.
Inorg Chem ; 63(8): 3992-3999, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359906

RESUMO

The thermodynamically stable 2H-phase MoS2 is a brilliant material toward hydrogen evolution reaction (HER) owing to its excellent Gibbs free energy of hydrogen adsorption. Nevertheless, the poor intrinsic properties of 2H-MoS2 limit its electrocatalytic performances toward HER. In this work, graphitic carbon nitride covalently bridging 2H-MoS2 (MoS2/GCN) is proposed to construct robust HER electrocatalysts. The strong π-p electron coupling between the delocalized π electrons of GCN and the localized p electrons of S atoms sufficiently expose active sites and accelerate the reaction kinetics. To be specific, MoS2/GCN exhibits remarkable HER activity (160 mV at 10 mA·cm-2) and long-term durability. Importantly, MoS2/GCN also provides great potential for industrial application. Density functional theory (DFT) calculations disclose that the π-p electron coupling at the MoS2/GCN interface regulates the electronic structure of S atoms, consequently providing enhanced HER performance. This work presents a feasible pathway to develop advanced electrocatalysts for energy conversions.

14.
Environ Sci Technol ; 58(32): 14575-14584, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094193

RESUMO

The chromogenic reaction between 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and ferrate [Fe(VI)] has long been utilized for Fe(VI) content measurement. However, the presence of electron-rich organic compounds has been found to significantly impact Fe(VI) detection using the ABTS method, leading to relative errors ranging from ∼88 to 100%. Reducing substances consumed ABTS•+ and resulted in underestimated Fe(VI) levels. Moreover, the oxidation of electron-rich organics containing hydroxyl groups by Fe(VI) could generate a phenoxyl radical (Ph•), promoting the transformation of Fe(VI) → Fe(V) → Fe(IV). The in situ formation of Fe(IV) can then contribute to ABTS oxidation, altering the ABTS•+:Fe(VI) stoichiometry from 1:1 to 2:1. To overcome these challenges, we introduced Mn(II) as an activator and 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic agent for Fe(VI) detection. This Mn(II)/TMB method enables rapid completion of the chromogenic reaction within 2 s, with a low detection limit of approximately 4 nM and a wide detection range (0.01-10 µM). Importantly, the Mn(II)/TMB method exhibits superior resistance to reductive interference and effectively eliminates the impact of phenoxyl-radical-mediated intermediate valence iron transfer processes associated with electron-rich organic compounds. Furthermore, this method is resilient to particle interference and demonstrates practical applicability in authentic waters.


Assuntos
Elétrons , Oxirredução , Ferro/química , Compostos Orgânicos/química , Benzotiazóis/química , Ácidos Sulfônicos
15.
Environ Res ; 244: 117969, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109956

RESUMO

Alkaline pre-treatment is known to enhance the acid production efficiency of sludge but adversely affects its dewatering performance. In this study, the improvement of sludge dewaterability by a novel bioleaching system with inoculating domesticated acidified sludge (AS) and its underlying mechanism were investigated. The results showed that although the addition of Fe2+ and the reduction of pH improved the dewatering performance of sludge, their effects were inferior to that of AS + Fe. The addition of AS and Fe2+ significantly reduced the specific resistance to filtration and capillary suction time of the sludge by 98.6 % and 95.5 %, respectively. This improvement in dewatering performance was achieved through the combined actions of bio-acidification, bio-oxidation, and bio-flocculation. Remarkably, under alkaline pH, microorganisms in AS remained active, leading to the formation of iron-based bioflocculants, along with a rapid pH decrease. These bioflocculants, in combination with protein (PN) in tightly bound extracellular polymeric substances (TB-EPS) through amide bonding, transformed TB-EPS from extractable to non-extractable form, reducing PN content from 12.1 mg g-1DS to 5.09 mg g-1DS and altering the protein's secondary structure. Consequently, the gel-like TB-EPS matrix effectively broke down, releasing cellular water and significantly enhancing sludge dewaterability.


Assuntos
Esgotos , Água , Água/química , Ferro/química , Filtração , Oxirredução , Eliminação de Resíduos Líquidos/métodos
16.
Environ Res ; 251(Pt 2): 118722, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499223

RESUMO

The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.


Assuntos
Poli-Hidroxialcanoatos , Salinidade , Tolerância ao Sal , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-39242459

RESUMO

Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease. While various inflammatory conditions have been linked to venous thromboembolism (VTE), the risk of VTE among patients with AD remains unclear. We sought to systematically review and meta-analyze population-based studies to determine the association between AD and incident VTE. A systematic review was performed of published studies in PubMed, Web of Science, Embase and Cochrane library from their inception to 27 May 2024. At least two reviewers conducted title/abstract, full-text review and data extraction. Cohort studies examining the association of AD with incident VTE were included. Quality of evidence was assessed using the Newcastle-Ottawa Scale. Six cohort studies, encompassing a total of 10,186,861 participants, were included. The meta-analysis revealed a significantly increased risk for incident VTE among AD patients (pooled hazard ratio (HR), 1.10; 95% CI, 1.00-1.21), with an incidence rate of VTE at 3.35 events per 1000 patient-years. Individual outcome analyses suggested that AD was associated with higher risks of deep vein thrombosis (pooled HR, 1.15; 95% CI, 1.04-1.27) but not pulmonary embolism (pooled HR, 0.99; 95% CI, 0.87-1.13). This systematic review and meta-analysis indicated an increased risk of incident VTE among patients with AD. Future studies are necessary to elucidate the underlying pathophysiology of the association between AD and VTE.

18.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38235798

RESUMO

MnBi2Te4 can generate a variety of exotic topological quantum states, which are closely related to its special structure. We conduct comprehensive multiple-cycle high-pressure research on MnBi2Te4 by using a diamond anvil cell to study its phase transition behaviors under high pressure. As observed, when the pressure does not exceed 15 GPa, the material undergoes an irreversible metal-semiconductor-metal transition, whereas when the pressure exceeds 17 GPa, the layered structure is damaged and becomes irreversibly amorphous due to the lattice distortion caused by compression, but it is not completely amorphous, which presents some nano-sized grains after decompression. Our investigation vividly reveals the phase transition behaviors of MnBi2Te4 under high pressure cycling and paves the experimental way to find topological phases under high pressure.

19.
J Nanobiotechnology ; 22(1): 97, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454419

RESUMO

Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Piroptose , Imunoterapia , Autofagia , Inibidores de Checkpoint Imunológico , Neoplasias/terapia
20.
Sleep Breath ; 28(4): 1661-1669, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38730204

RESUMO

STUDY OBJECTIVES: Artificial intelligence (AI) is quickly advancing in the field of sleep medicine, which bodes well for the potential of actual clinical use. In this study, an analysis of the 2nd China Intelligent Sleep Staging Competition was conducted to gain insights into the general level and constraints of AI-assisted sleep staging in China. METHODS: The outcomes of 10 teams from the children's track and 13 teams from the adult track were investigated in this study. The analysis included overall performance, differences between five different sleep stages, variations across subjects, and performance during stage transitions. RESULTS: The adult track's accuracy peaked at 80.46%, while the children's track's accuracy peaked at 88.96%. On average, accuracy rates stood at 71.43% for children and 68.40% for adults. All results were produced within a mere 5-min timeframe. The N1 stage was prone to misclassification as W, N2, and R stages. In the adult track, significant differences were apparent among subjects (p < 0.05), whereas in the children's track, such differences were not observed. Nonetheless, both tracks experienced a performance decline during stage transitions. CONCLUSIONS: The computational speed of AI is remarkably fast, simultaneously holding the potential to surpass the accuracy of physicians. Improving the machine learning model's classification of the N1 stage and transitional periods between stages, along with bolstering its robustness to individual subject variations, is imperative for maximizing its ability in assisting clinical scoring.


Assuntos
Fases do Sono , Humanos , China , Fases do Sono/fisiologia , Adulto , Criança , Masculino , Inteligência Artificial , Feminino , Polissonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa