Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2300197120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018192

RESUMO

Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li+ conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li+ behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li+ conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li+ conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co-O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li+ disassociation and enhances its transference number (tLi+). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm-1 and tLi+ of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium-sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.

2.
Nano Lett ; 24(10): 3125-3132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421805

RESUMO

Dilute magnetic semiconductors (DMSs) have attracted much attention because of their potential use in spintronic devices. Here, we demonstrate the observation of robust ferromagnetism in a solution-processable halide perovskite semiconductor with dilute magnetic ions. By codoping of magnetic (Fe2+) and aliovalent (Bi3+) metal ions into CH3NH3PbCl3 (MAPbCl3) perovskite, ferromagnetism with well-saturated magnetic hysteresis loops and a maximum coercivity field of 1280 Oe was observed below 12 K. The ferromagnetic resonance measurements revealed that the incorporation of aliovalent ions modulates the carrier concentration and plays an essential role in realizing the ferromagnetism in dilute magnetic halide perovskites. Magnetic ions are proposed to interact through itinerant charge carriers to achieve ferromagnetic coupling. Our work provides a new avenue for the development of solution-processable magnetic semiconductors.

3.
J Am Chem Soc ; 146(9): 6397-6407, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394777

RESUMO

Catalyst supports play an essential role in catalytic reactions, hinting at pronounced metal-support effects. Zeolites are a propitious support in heterogeneous catalysts, while their use in the electrocatalytic CO2 reduction reaction has been limited as yet because of their electrically insulating nature and serious competing hydrogen evolution reaction (HER). Enlightened by theoretical prediction, herein, we implant zinc ions into the structural skeleton of a zeolite Y to strategically tailor a favorable electrocatalytic platform with remarkably enhanced electronic conduction and strong HER inhibition capability, which incorporates ultrafine cadmium oxide nanoclusters as guest species into the supercages of the tailored 12-ring window framework. The metal d-bandwidth tuning of cadmium by skeletal zinc steers the extent of substrate-molecule orbital mixing, enhancing the stabilization of the key intermediate *COOH while weakening the CO poisoning effect. Furthermore, the strong cadmium-zinc interplay causes a considerable thermodynamic barrier for water dissociation in the conversion of H+ to *H, potently suppressing the competing HER. Therefore, we achieve an industrial-level partial current density of 335 mA cm-2 and remarkable Faradaic efficiency of 97.1% for CO production and stably maintain Faradaic efficiency above 90% at the industrially relevant current density for over 120 h. This work provides a proof of concept of tailored conductive zeolite as a favorable electrocatalytic support for industrial-level CO2 electrolysis and will significantly enhance the adaptability of conductive zeolite-based electrocatalysts in a variety of electrocatalysis and energy conversion applications.

4.
Small ; 20(17): e2309306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38098363

RESUMO

Next-generation batteries have long been considered a transition to more sustainable storage technologies. Among them, metal-air batteries (MABs) with low cost, high safety, and environmental friendliness have shown great potential for future large-scale applications. Motivated by the desirable characteristics, significant progress is made in suppressing serious parasitic reactions, improving electrochemical performance, and increasing the energy density in MABs. Compared to the widely reported liquid electrolyte strategy, solid-state electrolytes (SSEs) can thoroughly solve the volatilization challenges of liquid electrolytes and protect the oxygen electrodes without the formation of diffusion-blocking oxide phases. Notably, SSEs for MABs are still in their infancy, and many thorny challenges still need to be solved. In this review, the main electrochemical mechanism, key challenges, and some important progress are sorted out for solid-state MABs, such as lithium-air, zinc-air, aluminum-air, and magnesium-air batteries. Besides their fundamental significance, these configurations are further compared in terms of energy density, cost, carbon footprint, energy consumption, rate performance, cycle performance, safety, and air stability of prevailing electrolytes.

5.
Small ; : e2400327, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516947

RESUMO

Rechargeable zinc-air batteries (ZABs) rely on the development of high-performance bifunctional oxygen electrocatalysts to facilitate efficient oxygen reduction/evolution reactions (ORR/OER). Single-atom catalysts (SACs), characterized by their precisely defined active sites, have great potential for applications in ZABs. However, the design and architecture of atomic site electrocatalysts with both high activity and durability present significant challenges, owing to their spatial confinement and electronic states. In this study, a strategy is proposed to fabricate structurally uniform dual single-atom electrocatalyst (denoted as P-FeCo/NC) consisting of P-bridging Fe and Co bimetal atom (i.e., Fe-P-Co) decorated on N, P-co-doped carbon framework as an efficient and durable bifunctional electrocatalyst for ZABs. Experimental investigations and theoretical calculations reveal that the Fe-P-Co bridge-coupling structure enables a facile adsorption/desorption of oxygen intermediates and low activation barrier. The resultant P-FeCo/NC exhibits ultralow overpotential of 340 mV at 10 mA cm-2 for OER and high half-wave potential of 0.95 V for ORR. In addition, the application of P-FeCo/NC in rechargeable ZABs demonstrates enhanced performance with maximum power density of 115 mW cm-2 and long cyclic stability, which surpass Pt/C and RuO2 catalysts. This study provides valuable insights into the design and mechanism of atomically dispersed catalysts for energy conversion applications.

6.
Small ; 20(24): e2309769, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155589

RESUMO

Complicated oxygen evolution reaction (OER) poses the bottleneck in improving the efficiency of hydrogen production through water electrolysis. Herein, an integrated strategy to modulate the electronic structure of NiFe layered double hydroxide (NiFe-LDH) is reported by constructing Ag-incorporated NiCo-PBA@NiFe-LDH heterojunction with a hierarchical hollow structure. This "double heterojunction" facilitates local charge polarization at the interface, thereby promoting electron transfer and reducing the adsorption energy of intermediates, ultimately enhancing the intrinsic activity of the catalyst. It is noteworthy that an exchange bias field is observed between NiCo-PBA and NiFe-LDH, which will be conducive to regulating the electron spin states of metals and facilitating the production of triplet oxygen. Additionally, the unique hierarchical nanoboxes provide a large specific surface area that ensures adequate exposure to adsorption sites and active sites. Profiting from the synergistic advantages, the overpotential is as low as 190 mV at a current density of 10 mA cm-2, with a low Tafel slope of 21 mV dec-1. Moreover, density functional theory (DFT) calculation further substantiated that the incorporation of Ag in the heterojunction can effectively reduce the adsorption energy of reactant intermediates and enhance the conductivity.

7.
Small ; : e2401892, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794995

RESUMO

Inorganic solid-state electrolytes have attracted enormous attention due to their potential safety, increased energy density, and long cycle-life benefits. However, their application in solid-state batteries is limited by unstable electrode-electrolyte interface, poor point-to-point physical contact, and low utilization of metallic anodes. Herein, interfacial engineering based on sodium (Na)-conductive polymeric solid-state interfacial adhesive is studied to improve interface stability and optimize physical contacts, constructing a robust organic-rich solid electrolyte interphase layer to prevent dendrite-induced crack propagation and security issues. The interfacial adhesive strategy significantly increases the room-temperature critical current density of inorganic Na-ion conductors from 0.8 to 3.2 mA cm-2 and markedly enhances the cycling performance of solid-state batteries up to 500 cycles, respectively. Particularly, the Na3V2(PO4)3-based full solid-state batteries with high cathode loading of 10.16 mg cm-2 also deliver an excellent cycling performance, further realizing the stable operation of solid-state laminated pouch cells. The research provides fundamental perspectives into the role of interfacial chemistry and takes the field a step closer to realizing practical solid-state batteries.

8.
Small ; : e2311086, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459647

RESUMO

Despite the low competitive cost and high theoretical capacity of lithium-sulfur (Li-S) batteries, their practical application is severely hindered by the lithium polysulfide (LiPS) shuttling and low conversion efficiency. Herein, the electronic structure of hollow Titanium dioxide nanospheres is tunned by single Iron atom dopants that can cooperatively enhance LiPS absorption and facilitate desired redox reaction in practical Li-S batteries, further suppressing the notorious shuttle effect, which is consistent with theoretical calculations and in situ UV/vis investigation. The obtained electrode with massive active sites and lower energy barrier for sulfur conversions exhibits exceptional cycling stability after 500 cycles and high capacity under the sulfur loading of 10.53 mg cm-2 . In particular, an Ah-level Li-S pouch cell is fabricated, further demonstrating that the synthetic strategy based on atomic-level design offers a promising route toward practical high-energy-density Li-S batteries.

9.
Chemistry ; 30(8): e202303507, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37994505

RESUMO

The Sabatier principle suggests that an excessive adsorption of lithium polysulfides (LiPSs) by metal compounds may hinder their conversion in the absence of a conversion module. Therefore, it is imperative to establish a synergetic effect mechanism between "strong adsorption" and "rapid conversion" for LiPSs. To achieve this coexistence, a molybdenum-doped MnS/MnO@C porous structure is designed as a multifunctional coating on the polypropylene (PP) separator. The incorporation of MnS/MnO@C enhances the adsorption capacity towards LiPSs, while molybdenum facilitates subsequent conversion. Benefiting from the synergistic effect of each component and its large specific surface area, the cell with Mo-doped MnS/MnO@C coating achieves smooth adsorption-diffusion-conversion processes and exhibits an appreciable rate performance with outstanding cycling stability. Even when sulfur loading increases to 9.68 mg cm-2 , the modified battery delivers an excellent initial areal capacity of 11.69 mAh cm-2 and maintains 6.97 mAh cm-2 after 50 cycles at 0.1 C. This study presents a promising approach to simultaneously accomplish "strong adsorption" and "rapid conversion" of polysulfides, offering novel perspectives for devising dual-functional modified separators.

10.
J Magn Reson Imaging ; 59(3): 1083-1092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37367938

RESUMO

BACKGROUND: Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T-staging is unclear. PURPOSE: To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T-staging accuracy. STUDY TYPE: Retrospective. POPULATION: After cross-validation, 260 patients (123 with T-stage T1-2 and 134 with T-stage T3-4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). FIELD STRENGTH/SEQUENCE: 3.0 T/Dynamic contrast enhanced (DCE), T2-weighted imaging (T2W), and diffusion-weighted imaging (DWI). ASSESSMENT: The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T-stage. For comparison, the single parameter DL-model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. STATISTICAL TESTS: The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P-values less than 0.05 were considered statistically significant. RESULTS: The Area Under Curve (AUC) of the multiparametric DL-model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL-models including T2W-model (AUC = 0.735), DWI-model (AUC = 0.759), and DCE-model (AUC = 0.789). DATA CONCLUSION: In the evaluation of rectal cancer patients, the proposed multiparametric DL-model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL-model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias Retais , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Estudos Retrospectivos
11.
Chem Rec ; 24(3): e202300315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117027

RESUMO

Owing to the mature technology, natural abundance of raw materials, high recycling efficiency, cost-effectiveness, and high safety of lead-acid batteries (LABs) have received much more attention from large to medium energy storage systems for many years. Lead carbon batteries (LCBs) offer exceptional performance at the high-rate partial state of charge (HRPSoC) and higher charge acceptance than LAB, making them promising for hybrid electric vehicles and stationary energy storage applications. Despite that, adding carbon to the negative active electrode considerably enhances the electrochemical performance. However, carbon brings some adverse effects, such as the severe hydrogen evolution reaction (HER) in the NAM due to the low overpotential of carbon material, promoting severe water loss in LCBs. From a practical application point of view, the irreversible sulfation of the negative active material (NAM) and extreme shedding and softening of the positive active material (PAM) are the main obstacles for next-generation LCBs. Recently, a lead-carbon composite additive delayed the parasitic hydrogen evolution and eliminated the sulfation problem, ensuring a long life of LCBs for practical aspects. This comprehensive review outlines a brief developmental historical background of LAB, its shifting towards LCB, the failure mode of LAB, and possible potential solutions to tackle the failure problems. The detailed LCB's development towards long life was discussed in light of the reported literature to guide the researcher to date progress. More emphasis was directed toward the new applications of LCBs for stationary energy storage applications. Finally, state-of-the-art progress and further research gaps were pointed out for future work in this exciting era.

12.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990324

RESUMO

OBJECTIVES: To compare the diagnostic performance of three readers using BI-RADS and Kaiser score (KS) based on mass and non-mass enhancement (NME) lesions. METHODS: A total of 630 lesions, 393 malignant and 237 benign, 458 mass and 172 NME, were analyzed. Three radiologists with 3 years, 6 years, and 13 years of experience made diagnoses. 596 cases had diffusion-weighted imaging, and the apparent diffusion coefficient (ADC) was measured. For lesions with ADC > 1.4 × 10-3 mm2/s, the KS was reduced by 4 as the modified KS +, and the benefit was assessed. RESULTS: When using BI-RADS, AUC was 0.878, 0.915, and 0.941 for mass, and 0.771, 0.838, 0.902 for NME for Reader-1, 2, and 3, respectively, better for mass than for NME. The diagnostic accuracy of KS was improved compared to BI-RADS for less experienced readers. For Reader-1, AUC was increased from 0.878 to 0.916 for mass (p = 0.005) and from 0.771 to 0.822 for NME (p = 0.124). Based on the cut-off value of BI-RADS ≥ 4B and KS ≥ 5 as malignant, the sensitivity of KS by Readers-1 and -2 was significantly higher for both Mass and NME. When ADC was considered to change to modified KS +, the AUC and the accuracy for all three readers were improved, showing higher specificity with slightly degraded sensitivity. CONCLUSION: The benefit of KS compared to BI-RADS was most noticeable for the less experienced readers in improving sensitivity. Compared to KS, KS + can improve specificity for all three readers. For NME, the KS and KS + criteria need to be further improved. CLINICAL RELEVANCE STATEMENT: KS provides an intuitive method for diagnosing lesions on breast MRI. BI-RADS and KS face greater difficulties in evaluating NME compared to mass lesions. Adding ADC to the KS can improve specificity with slightly degraded sensitivity. KEY POINTS: KS provides an intuitive method for interpreting breast lesions on MRI, most helpful for novice readers. KS, compared to BI-RADS, improved sensitivity in both mass and NME groups for less experienced readers. NME lesions were considered during the development of the KS flowchart, but may need to be better defined.

13.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747437

RESUMO

Zero-dimensional (0D) hybrid metal halides (HMHs) have emerged as a promising platform for exploring excitation-dependent multicolor luminescent materials owing to their diverse crystal structures and chemical compositions. Nevertheless, understanding the mechanism behind excitation-dependent emissions (EDEs) in 0D HMHs and achieving precise modulation remains challenging. In this work, the delicate regulations on the EDE of 0D (DMEDABr)4SnBr3I3 (DMEDA: N, N'-dimethylethylenediamine) with mixed halogens are achieved under low temperature and high pressure, respectively. The inhomogeneous halogen occupation at the atomic scale leads to the formation of Br-rich and I-rich SnX6 (X = Br, I) octahedra, which act as distinct luminescent centers upon photoexcitation. At low temperatures, the narrowed photoluminescence spectra could distinguish the individual emissions from different luminescent centers, resulting in a pronounced EDE of (DMEDABr)4SnBr3I3. In addition, the contraction and distortion of the luminescent SnX6 (X = Br, I) centers at high pressure further result in different degrees of emission shifts, giving rise to the gradual emergence and disappearance of EDE. This work elucidates the underlying mechanism of EDE in 0D HMHs and highlights the crucial role of halogens in determining the optical properties of metal halides.

14.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667803

RESUMO

Three novel meroterpenoids, taladrimanins B-D (1-3), were isolated from the marine-derived fungus Talaromyces sp. M27416, alongside three biogenetically related compounds (4-6). We delineated taladrimanin B's (1) structure using HRESIMS and NMR, confirmed its configuration via quantum chemical NMR analysis and DP4+ methodology, and verified it through X-ray crystallography. ECD calculations determined the absolute configuration of compound 1, while comparative NMR and ECD analyses elucidated the absolute configurations of 2 and 3. These compounds are drimane-type meroterpenoids with a C10 polyketide unit (8R-configuration). We proposed a biosynthetic pathway and noted that compound 1 showed cytotoxic activity against MKN-45 and 5637 cell lines and selective antibacterial effects against Staphylococcus aureus CICC 10384.


Assuntos
Antibacterianos , Staphylococcus aureus , Talaromyces , Terpenos , Talaromyces/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Humanos , Linhagem Celular Tumoral , Staphylococcus aureus/efeitos dos fármacos , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Cristalografia por Raios X , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Organismos Aquáticos , Estrutura Molecular , Espectroscopia de Ressonância Magnética
15.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921585

RESUMO

Talaromyces, a filamentous fungus widely distributed across terrestrial and marine environments, can produce a diverse array of natural products, including alkaloids, polyketones, and polyketide-terpenoids. Among these, chrodrimanins represented a typical class of natural products. In this study, we isolated three previously undescribed pentaketide-sesquiterpenes, 8,9-epi-chrodrimanins (1-3), along with eight known compounds (4-11). The structures of compounds 1-3 were elucidated using nuclear magnetic resonance (NMR) and mass spectrometry (MS), while their absolute configurations were determined through X-ray crystallography and electronic circular dichroism (ECD) computations. The biosynthetic pathways of compounds 1-3 initiate with 6-hydroxymellein and involve multiple stages of isoprenylation, cyclization, oxidation, and acetylation. We selected four strains of gastrointestinal cancer cells for activity evaluation. We found that compound 3 selectively inhibited MKN-45, whereas compounds 1 and 2 exhibited no significant inhibitory activity against the four cell lines. These findings suggested that 8,9-epi-chrodrimanins could serve as scaffold compounds for further structural modifications, potentially leading to the development of targeted therapies for gastric cancer.


Assuntos
Antineoplásicos , Talaromyces , Talaromyces/química , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cristalografia por Raios X , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Organismos Aquáticos , Espectroscopia de Ressonância Magnética , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Estrutura Molecular
16.
Chem Biodivers ; 21(4): e202301898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369765

RESUMO

Polyoxometalates (POMs) are promising inorganic drug candidates for cancer chemotherapy. They are becoming attractive because of their easy accessibility and low cost. Herein, we report the synthesis and antitumor activity studies of four Lindqvist-type POMs with mixed-addenda atoms Na2[V4W2O16{(OCH2)3CR}] (R=-CH2OH, -CH3, -CH2CH3) and (Bu4N)2[V3W3{(OCH2)3CH2OOCCH2CH3}]. Compared with the current clinical applied antitumor drug 5-fluorouracil (5-FU) or Gemcitabine, analysis of MTT/CCK-8 assay, colony formation and wound healing assay revealed that the {V4W2} POMs had acceptable cytotoxicity in normal cells (293T) and significant inhibitory effects on cell proliferation and migration in three human tumor cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa), and human breast cancer cells (MCF-7). Interestingly, among the POMs analyzed, the therapeutic index (TI) of the {V4W2} POM with R= -CH2OH was relatively the most satisfactory. Thus, it was subsequently used for further studies. Flow cytometry analysis showed it prompted cellular apoptosis rate. qRT-PCR and Western blotting analysis indicated that multiple cell death pathways were activated including apoptosis, autophagy, necroptosis and pyroptosis during the POM-mediated antitumor process. In conclusion, our study shows that the polyoxotungstovanadate has great potential to be developed into a broad-spectrum antitumor chemotherapeutic drug.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma/tratamento farmacológico
17.
Compr Rev Food Sci Food Saf ; 23(3): e13366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775125

RESUMO

Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.


Assuntos
Fibras na Dieta , Xilanos , Xilanos/química , Fibras na Dieta/análise
18.
Angew Chem Int Ed Engl ; : e202407380, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887170

RESUMO

Flexible zinc-air batteries are leading power sources for next-generation smart wearable electronics. However, flexible zinc-air batteries suffer from the highly-corrosive safety risk and limited lifespan due to the absence of reliable solid-state electrolytes (SSEs). Herein, a single-anion conductive SSE with high-safety is constructed by incorporating a highly amorphous dual-cation ionomer into a robust hybrid matrix of functional carbon nanotubes and polyacrylamide polymer. The as-fabricated SSE obtains dual-penetrating ionomer-polymer networks and hierarchical ionic highways, which contribute to mechanical robustness with 1200% stretchability, decent water uptake and retention, and superhigh ion conductivity of 245 mS·cm-1 and good Zn anode reversibility. Remarkably, the flexible solid-state zinc-air batteries delivers a high specific capacity of 764 mAh·g-1 and peak power density of 152 mW·cm-2 as well as sustains excellent cycling stability for 1050 cycles (350 hours. This work offers a new paradigm of OH- conductors and broadens the definition and scope of OH- conductors.

19.
Angew Chem Int Ed Engl ; 63(21): e202401974, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470070

RESUMO

Despite many additives have been reported for aqueous zinc ion batteries, steric-hindrance effect of additives and its correlation with Zn2+ solvation structure have been rarely reported. Herein, large-sized sucrose biomolecule is selected as a paradigm additive, and steric-hindrance electrolytes (STEs) are developed to investigate the steric-hindrance effect for solvation structure regulation. Sucrose molecules do not participate in Zn2+ solvation shell, but significantly homogenize the distribution of solvated Zn2+ and enlarge Zn2+ solvation shell with weakened Zn2+-H2O interaction due to the steric-hindrance effect. More importantly, STEs afford the water-shielding electric double layer and in situ construct the organic and inorganic hybrid solid electrolyte interface, which effectively boost Zn anode reversibility. Remarkably, Zn//NVO battery presents high capacity of 3.9 mAh ⋅ cm-2 with long cycling stability for over 650 cycles at lean electrolyte of 4.5 µL ⋅ mg-1 and low N/P ratio of 1.5, and the stable operation at wide temperature (-20 °C~+40 °C).

20.
Angew Chem Int Ed Engl ; : e202407909, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993054

RESUMO

In-situ construction of solid electrolyte interfaces (SEI) is an effective strategy to enhance the reversibility of zinc (Zn) anodes. However, in-situ SEI to afford high reversibility under high current density conditions (≥ 20 mA cm-2) is highly desired yet extremely challenging. Herein, we propose a dual reaction strategy of spontaneous electrostatic reaction and electrochemical decomposition for the in-situ construction of SEI, which is composed of organic-rich upper layer and inorganic-rich inner layer. Particularly, in-situ SEI performs as "growth binder" at small current density and "orientation regulator" at high current density, which significantly suppresses side reactions and dendrite growth. The in-situ SEI affords the record-breaking reversibility of Zn anode under practical conditions, Zn//Zn symmetric cells can stably cycle for over 1300 h and 400 h at current densities of 50 mA cm-2 and 100 mA cm-2, respectively, showcasing an exceptional cumulative capacity of 67.5 Ah cm-2. Furthermore, the practicality of this in-situ SEI is verified in Zn//PANI pouch cells with high mass loading of 25.48 mg cm-2. This work provides a universal strategy to design advanced SEI for practical Zn-ion batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa