Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Magn Reson Imaging ; 55(2): 373-388, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179830

RESUMO

Acceleration is an important consideration when imaging moving organs such as the heart. Not only does acceleration enable motion-free scans but, more importantly, it lies at the heart of capturing the dynamics of cardiac motion. For over three decades, various ingenious approaches have been devised and implemented for rapid CINE MRI suitable for dynamic cardiac imaging. Virtually all techniques relied on acquiring less data to reduce acquisition times. Parallel imaging was among the first of these innovations, using multiple receiver coils and mathematical algorithms for reconstruction; acceleration factors of 2 to 3 were readily achieved in clinical practice. However, in the context of imaging dynamic events, further decreases in scan time beyond those provided by parallel imaging were possible by exploiting temporal coherencies. This recognition ushered in the era of k-t accelerated MRI, which utilized predominantly statistical methods for image reconstruction from highly undersampled k-space. Despite the successes of k-t acceleration methods, however, the accuracy of reconstruction was not always guaranteed. To address this gap, MR physicists and mathematicians applied compressed sensing theory to ensure reconstruction accuracy. Reconstruction was, indeed, more robust, but it required optimizing regularization parameters and long reconstruction times. To solve the limitations of all previous methods, researchers have turned to artificial intelligence and deep neural networks for the better part of the past decade, with recent results showing rapid, robust reconstruction. This review provides a comprehensive overview of key developments in the history of CINE MRI acceleration, and offers a unique and intuitive explanation behind the techniques and underlying mathematics.Level of Evidence: 5Technical Efficacy Stage: 1.


Assuntos
Inteligência Artificial , Imagem Cinética por Ressonância Magnética , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
2.
Pediatr Radiol ; 41(6): 702-10, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21161204

RESUMO

BACKGROUND: T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable. OBJECTIVE: To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value. MATERIALS AND METHODS: Thirty preterm neonates born between 24 and 32 weeks' gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences. RESULTS: No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images. CONCLUSION: High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information.


Assuntos
Encéfalo/patologia , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Radiographics ; 28(4): 1147-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18635634

RESUMO

Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Física/métodos
4.
Sci Rep ; 7(1): 15493, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138455

RESUMO

Magnetic resonance imaging (MRI) provides superior resolution of anatomical features and the best soft tissue contrast, and is one of the predominant imaging modalities. With this technique, contrast agents are often used to aid discrimination by enhancing specific features. Over the years, a rich diversity of such agents has evolved and with that, so has a need to systematically sort contrast agents based on their efficiency, which directly determines sensitivity. Herein, we present a scale to rank MRI contrast agents. The scale is based on analytically determining the minimum detectable concentration of a contrast agent, and employing a ratiometric approach to standardize contrast efficiency to a benchmark contrast agent. We demonstrate the approach using several model contrast agents and compare the relative sensitivity of these agents for the first time. As the first universal metric of contrast agent sensitivity, this scale will be vital to easily assessing contrast agent efficiency and thus important to promoting use of some of the elegant and diverse contrast agents in research and clinical practice.

5.
Chem Sci ; 7(7): 4308-4317, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155077

RESUMO

Magnetic resonance imaging (MRI) is a preferred technique for noninvasively monitoring the fate of implanted cells, such as stem cells and immune cells in vivo. Cellular MRI requires contrast agents (CAs) to label the cells of interest. Despite promising progress made in this emerging field, highly sensitive, stable and biocompatible T1 CAs with high cell permeability and specificity remains an unmet challenge. To address this need, a novel MnIII-porphyrin, MnAMP was designed and synthesized based on the modification of MnIIItetra(carboxy-porphyrin) (MnTCP), a small and highly stable non-Gd extracellular CA with good biocompatibility and high T1 relaxivity (r1 = 7.9 mM-1 s-1) at clinical field of 3 Tesla (T). Cell permeability was achieved by masking the polar carboxylates of MnTCP with acetoxymethyl-ester (AM) groups, which are susceptible to hydrolysis by intracellular esterases. The enzymatic cleavage of AM groups led to disaggregation of the hydrophobic MnAMP, releasing activated MnTCP with significant increase in T1 relaxivity. Cell uptake of MnAMP is highly efficient as tested on two non-phagocytic human cell lines with no side effects observed on cell viability. MRI of labeled cells exhibited significant contrast enhancement with a short T1 of 161 ms at 3 T, even though a relatively low concentration of MnAMP and short incubation time was applied for cell labeling. Overall, MnAMP is among the most efficient T1 cell labeling agents developed for cellular MRI.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa