Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 145(2): 1206-1215, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36586130

RESUMO

Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host-guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid-base interactions between W═O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV-vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host-guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems.


Assuntos
Nanotubos , Nanotubos/química , Compostos de Boro/química
2.
Nano Lett ; 20(7): 4761-4767, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510961

RESUMO

We present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by in situ Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area. Growth kinetics of chevron GNRs (CGNRs) and seven atoms wide armchair GNRs (7-AGNRs) is investigated. The reaction rate constants for polymerization, cyclodehydrogenation, and interribbon fusion are experimentally determined. We find that the limiting rate constants for CGNR growth are several hundred times smaller than for 7-AGNR growth and that interribbon fusion is an important elementary reaction occurring during 7-AGNR growth. Our work highlights that photothermal synthesis and in situ Raman spectroscopy are a powerful tandem for the investigation of on-surface reactions.

3.
Nano Lett ; 20(7): 5259-5266, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515967

RESUMO

Launching and controlling magnons with laser pulses opens up new routes for applications including optomagnetic switching and all-optical spin wave emission and enables new approaches for information processing with ultralow energy dissipation. However, subwavelength light localization within the magnetic structures leading to efficient magnon excitation that does not inherently absorb light has still been missing. Here, we propose to marriage the laser-induced ultrafast magnetism and nanophotonics to efficiently excite and control spin dynamics in magnetic dielectric structures. We demonstrate that nanopatterning by a 1D grating of trenches allows localization of light in spots with sizes of tens of nanometers and thus launch the exchange standing spin waves of different orders. The relative amplitude of the exchange and magnetostatic spin waves can be adjusted on demand by modifying laser pulse polarization, incidence angle, and wavelength. Nanostructuring of the magnetic media provides a unique possibility for the selective spin manipulation, a key issue for further progress of magnonics, spintronics, and quantum technologies.

4.
Adv Sci (Weinh) ; 11(36): e2404694, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39082235

RESUMO

The lattice geometry of natural materials and the structural geometry of artificial materials are crucial factors determining their physical properties. Most materials have predetermined geometries that lead to fixed physical characteristics. Here, the demonstration of a carbon nanotube network serves as an example of a system with controllable orientation achieving on-demand optical properties. Such a network allows programming their optical response depending on the orientation of the constituent carbon nanotubes and leads to the switching of its dielectric tensor from isotropic to anisotropic. Furthermore, it also allows for the achievement of wavelength-dispersion for their principal optical axes - a recently discovered phenomenon in van der Waals triclinic crystals. The results originate from two unique carbon nanotubes features: uniaxial anisotropy from the well-defined cylindrical geometry and the intersection interaction among individual carbon nanotubes. The findings demonstrate that shaping the relative orientations of carbon nanotubes or other quasi-one-dimensional materials of cylindrical symmetry within a network paves the way to a universal method for the creation of systems with desired optical properties.

5.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570499

RESUMO

Significant progress in carbon nanostructures has been achieved in the past 20 years; however, there is plenty of room for further study [...].

6.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049361

RESUMO

Carbon nanomaterials are a class of materials that include allotropic modifications of carbon [...].

7.
Nanoscale ; 14(5): 1978-1989, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060988

RESUMO

Molecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons. Recently, the formation of atomically precise graphene nanoribbons inside SWCNTs has been reported. However, there have been only a limited amount of approaches to form ordered magnetic structures inside the nanotube channels and the creation of magnetic nanoribbons is still lacking. In this work we synthesize and reveal the properties of cobalt-phthalocyanine based nanoribbons (CoPcNRs) encapsulated in SWCNTs. Raman spectroscopy, transmission electron microscopy, absorption spectroscopy, and density functional theory calculations allowed us to confirm the encapsulation and to reveal the specific fingerprints of CoPcNRs. The magnetic properties were studied by transverse magnetooptical Kerr effect measurements, which indicated a strong difference in comparison with the pristine unfilled SWCNTs due to the impact of Co incorporated atoms. We anticipate that this approach of polymerization of encapsulated magnetic molecules inside SWCNTs will result in a diverse class of protected low-dimensional ordered magnetic materials for various applications.

8.
Nat Commun ; 12(1): 2542, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953174

RESUMO

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

9.
J Am Chem Soc ; 132(40): 13994-6, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20857973

RESUMO

We have developed a magnesia (MgO)-supported iron-copper (FeCu) catalyst to accomplish the growth of single-walled carbon nanotubes (SWNTs) using carbon monoxide (CO) as the carbon source at ambient pressure. The FeCu catalyst system facilitates the growth of small-diameter SWNTs with a narrow diameter distribution. UV-vis-NIR optical absorption spectra and photoluminescence excitation (PLE) mapping were used to evaluate the relative quantities of the different (n,m) species. We have also demonstrated that the addition of Cu to the Fe catalyst can also cause a remarkable increase in the yield of SWNTs. Finally, a growth mechanism for the FeCu-catalyzed synthesis of SWNTs has been proposed.


Assuntos
Cobre/química , Ferro/química , Nanotubos de Carbono , Catálise , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Difração de Raios X
10.
Nat Commun ; 11(1): 5487, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127921

RESUMO

Nanostructured magnetic materials provide an efficient tool for light manipulation on sub-nanosecond and sub-micron scales, and allow for the observation of the novel effects which are fundamentally impossible in smooth films. For many cases of practical importance, it is vital to observe the magneto-optical intensity modulation in a dual-polarization regime. However, the nanostructures reported on up to date usually utilize a transverse Kerr effect and thus provide light modulation only for p-polarized light. We present a concept of a transparent magnetic metasurface to solve this problem, and demonstrate a novel mechanism for magneto-optical modulation. A 2D array of bismuth-substituted iron-garnet nanopillars on an ultrathin iron-garnet slab forms a metasurface supporting quasi-waveguide mode excitation. In contrast to plasmonic structures, the all-dielectric magnetic metasurface is shown to exhibit much higher transparency and superior quality-factor resonances, followed by a multifold increase in light intensity modulation. The existence of a wide variety of excited mode types allows for advanced light control: transmittance of both p- and s-polarized illumination becomes sensitive to the medium magnetization, something that is fundamentally impossible in smooth magnetic films. The proposed metasurface is very promising for sensing, magnetometry and light modulation applications.

11.
Sci Rep ; 8(1): 11435, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061684

RESUMO

Optical impact on the spin system in a magnetically ordered medium provides a unique possibility for local manipulation of magnetization at subpicosecond time scales. One of the mechanisms of the optical manipulation is related to the inverse Faraday effect (IFE). Usually the IFE is observed in crystals and magnetic films on a substrate. Here we demonstrate the IFE induced by fs-laser pulses in the magnetic film inside the magnetophotonic microcavity. Spectral dependence of the IFE on the laser pulse wavelength in the band gap of the magnetophotonic microcavity has a sharp peak leading to a significant enhancement of the IFE. This phenomenon is explained by strong confinement of the electromagnetic energy within the magnetic film. Calculated near field distribution of the IFE effective magnetic field indicates its subwavelength localization within 30 nm along the film thickness. These excited volumes can be shifted along the sample depth via e.g. changing frequency of the laser pulses. The obtained results open a way for ultrafast optical control of magnetization at subwavelength scales.

12.
ACS Nano ; 7(7): 6346-53, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23795665

RESUMO

We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.


Assuntos
Grafite/química , Grafite/efeitos da radiação , Medições Luminescentes/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Luz , Teste de Materiais , Nanotubos de Carbono/ultraestrutura , Espalhamento de Radiação
13.
Sci Rep ; 3: 1460, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23492872

RESUMO

Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an atomic-resolution environmental transmission electron microscope at a low CO pressure was recorded. We achieved highly preferential growth of semiconducting SWNTs (~90%) with an exceptionally large population of (6, 5) tubes (53%) in an ambient CO atmosphere. Particularly, we also demonstrated high enrichment in (7, 6) and (9, 4) at a low growth temperature. These findings open new perspectives both for structural control of SWNTs and for elucidating the growth mechanisms.


Assuntos
Cobalto/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Catálise , Cristalografia por Raios X , Cinética , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
14.
Chem Commun (Camb) ; 47(4): 1219-21, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21103594

RESUMO

SiO(2) supported cobalt (Co) catalyst could be partially reduced and anchored by unreduced Co ions during a carbon monoxide (CO) chemical vapor deposition (CVD) process. This resulted in the formation of sub-nanometre metallic Co clusters catalyzing the growth of single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution.


Assuntos
Cobalto/química , Nanotubos de Carbono/química , Monóxido de Carbono/química , Catálise , Nanotubos de Carbono/ultraestrutura , Dióxido de Silício/química , Análise Espectral Raman , Temperatura
15.
Opt Lett ; 33(12): 1336-8, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18552950

RESUMO

We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped fiber. This laser is pumped by an erbium fiber laser at 1.57 microm wavelength and produces a 37 MHz train of mode-locked 1.32 ps pulses at 1.93 microm wavelength with an average output power of 3.4 mW.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa