Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(4): 455-463, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152506

RESUMO

The nature of autoantigens that trigger autoimmune diseases has been much discussed, but direct biochemical identification is lacking for most. Addressing this question demands unbiased examination of the self-peptides displayed by a defined autoimmune major histocompatibility complex class II (MHC-II) molecule. Here, we examined the immunopeptidome of the pancreatic islets in non-obese diabetic mice, which spontaneously develop autoimmune diabetes based on the I-Ag7 variant of MHC-II. The relevant peptides that induced pathogenic CD4+ T cells at the initiation of diabetes derived from proinsulin. These peptides were also found in the MHC-II peptidome of the pancreatic lymph nodes and spleen. The proinsulin-derived peptides followed a trajectory from their generation and exocytosis in ß cells to uptake and presentation in islets and peripheral sites. Such a pathway generated conventional epitopes but also resulted in the presentation of post-translationally modified peptides, including deamidated sequences. These analyses reveal the key features of a restricted component in the self-MHC-II peptidome that caused autoreactivity.

2.
Nat Immunol ; 21(5): 589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238948

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Immunol ; 21(1): 65-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848486

RESUMO

The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Animais , Caspase 1/genética , Caspase 8/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Proteína Ligante Fas/metabolismo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Cell ; 169(7): 1170-1172, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622502

RESUMO

Survival of deleterious infections depends significantly on how much stress the affected organism can tolerate. In this issue, Weis et al. find that mice can survive sepsis by maintaining normoglycemia through ferritin's capacity to inactivate Fe2+ ions that otherwise induce free radicals impacting gluconeogenesis in the liver.


Assuntos
Gluconeogênese , Tolerância Imunológica , Animais , Camundongos , Sepse
5.
Immunol Rev ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716867

RESUMO

Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.

6.
Immunity ; 47(2): 310-322.e7, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813660

RESUMO

Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.


Assuntos
Anticorpos Neutralizantes , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Humoral , Vírus do Tumor Mamário do Camundongo/imunologia , Vírus Rauscher/imunologia , Infecções por Retroviridae/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Apresentação de Antígeno/genética , Biologia Computacional , Feminino , Predisposição Genética para Doença , Antígenos HLA-D/genética , Células HeLa , Hepatite B/imunologia , Hepatite B/transmissão , Hepatite C/imunologia , Hepatite C/transmissão , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Imunidade Humoral/genética , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Mutação/genética , Polimorfismo Genético , Infecções por Retroviridae/transmissão
7.
J Immunol ; 207(12): 2944-2951, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810225

RESUMO

H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.


Assuntos
Autoimunidade , Antígenos HLA-D , Animais , Apresentação de Antígeno , Antígenos HLA-D/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Camundongos , Peptídeos , Receptores de Antígenos de Linfócitos T
8.
Nat Immunol ; 11(1): 28-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20016507

RESUMO

During protective immune responses, the adaptive arm of the immune system requires activation by signals provided by innate immunity and driven by microbial stimuli. Whether the same rules apply to autoimmune diseases involving clonal self-reactive T and B lymphocytes--a process referred to here as 'adaptive autoimmunity'--is not quite clear. Nevertheless, in these diseases, the innate-adaptive connection is likely to be influenced by the microbial environment. This review integrates the results of experiments analyzing autoimmunity in sterile versus nonsterile conditions and experiments testing the role of innate immune receptor signaling in autoimmunity. It proposes that autoimmune diseases can be divided into two groups, the pathogenesis of which either follows the rules of innate-adaptive connection or does not.


Assuntos
Imunidade Adaptativa/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Imunidade Inata/imunologia , Animais , Doenças Autoimunes/microbiologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Humanos , Modelos Biológicos , Micoses/imunologia , Micoses/microbiologia , Receptores Imunológicos/imunologia
9.
Immunity ; 39(2): 400-12, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973225

RESUMO

Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific pathogen-free nonobese diabetic (NOD) mice, females have 1.3-4.4 times higher incidence of type 1 diabetes (T1D). Germ-free (GF) mice lost the gender bias (female-to-male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some, but not all, lineages overrepresented in male mice supported a gender bias in T1D. Although protection of males did not correlate with blood androgen concentration, hormone-supported expansion of selected microbial lineages may work as a positive-feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene-expression analysis suggested pathways involved in protection of males from T1D by microbiota. Our results favor a two-signal model of gender bias, in which hormones and microbes together trigger protective pathways.


Assuntos
Androgênios/metabolismo , Doenças Autoimunes/imunologia , Autoimunidade , Infecções Bacterianas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Animais , Autoimunidade/imunologia , Castração , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Interferon gama/biossíntese , Ativação Linfocitária , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos NOD , Caracteres Sexuais
10.
Immunity ; 34(5): 697-9, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21616440

RESUMO

Commensal microbiota confers a goldilocks state of alertness to pathogens, yet restrains deleterious inflammation. In this issue of Immunity, Geuking et al. (2011) demonstrate that a minimal bacterial community of the Schaedler flora establishes a balance between pro- and anti-inflammatory T cells in the gut.

11.
Nature ; 514(7524): 638-41, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25274297

RESUMO

Systemic infection induces conserved physiological responses that include both resistance and 'tolerance of infection' mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host's resources to maintain host-microbial interactions during pathogen-induced stress.


Assuntos
Doença , Epitélio/metabolismo , Epitélio/microbiologia , Fucose/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Simbiose , Animais , Anorexia/complicações , Anorexia/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ingestão de Alimentos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Fucosiltransferases/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicosilação , Tolerância Imunológica , Imunidade Inata , Interleucinas/biossíntese , Interleucinas/imunologia , Ligantes , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Microbiota/fisiologia , Fatores de Proteção , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Fatores de Virulência/genética , Interleucina 22 , Galactosídeo 2-alfa-L-Fucosiltransferase
13.
J Immunol ; 197(3): 701-5, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324130

RESUMO

Polyglandular autoimmune inflammation accompanies type 1 diabetes (T1D) in NOD mice, affecting organs like thyroid and salivary glands. Although commensals are not required for T1D progression, germ-free (GF) mice had a very low degree of sialitis, which was restored by colonization with select microbial lineages. Moreover, unlike T1D, which is blocked in mice lacking MyD88 signaling adaptor under conventional, but not GF, housing conditions, sialitis did not develop in MyD88(-/-) GF mice. Thus, microbes and MyD88-dependent signaling are critical for sialitis development. The severity of sialitis did not correlate with the degree of insulitis in the same animal and was less sensitive to a T1D-reducing diet, but it was similar to T1D with regard to microbiota-dependent sexual dimorphism. The unexpected distinction in requirements for the microbiota for different autoimmune pathologies within the same organism is crucial for understanding the nature of microbial involvement in complex autoimmune disorders, including human autoimmune polyglandular syndromes.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Microbiota/fisiologia , Poliendocrinopatias Autoimunes/microbiologia , Sialadenite/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Caracteres Sexuais
14.
Proc Natl Acad Sci U S A ; 112(32): 9973-7, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216961

RESUMO

Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria ("specific lineage hypothesis") or by dominance of negative (tolerizing) signaling over proinflammatory signaling ("balanced signal hypothesis") in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN ß (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbiota , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Vida Livre de Germes , Ilhotas Pancreáticas/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fator 88 de Diferenciação Mieloide/metabolismo , Filogenia
15.
J Immunol ; 194(12): 5588-93, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048966

RESUMO

Fucose is an L-configuration sugar found abundantly in the mammalian gut. It has long been known to be induced there by the presence of bacteria, but only recently have some of the molecular mechanisms behind this process been uncovered. New work suggests that fucose can have a protective role in both gut-centered and systemic infection and inflammation. This review highlights recent studies showing that, in addition to acting as a food source for beneficial gut symbionts, host fucose can suppress the virulence of pathogens and pathobionts. The relevance of gut fucosylation to human diseases also is discussed.


Assuntos
Fucose/metabolismo , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microbiota , Simbiose , Animais , Humanos
16.
Proc Natl Acad Sci U S A ; 111(23): 8559-64, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912151

RESUMO

Chronic viral infections incapacitate adaptive immune responses by "exhausting" virus-specific T cells, inducing their deletion and reducing productive T-cell memory. Viral infection rapidly induces death receptor CD95 (Fas) expression by dendritic cells (DCs), making them susceptible to elimination by the immune response. Lymphocytic choriomeningitis virus (LCMV) clone 13, which normally establishes a chronic infection, is rapidly cleared in C57Black6/J mice with conditional deletion of Fas in DCs. The immune response to LCMV is characterized by an extended survival of virus-specific effector T cells. Moreover, transfer of Fas-negative DCs from noninfected mice to preinfected animals results in either complete clearance of the virus or a significant reduction of viral titers. Thus, DC-specific Fas expression plays a role in regulation of antiviral responses and suggests a strategy for stimulation of T cells in chronically infected animals and humans to achieve the clearance of persistent viruses.


Assuntos
Células Dendríticas/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptor fas/imunologia , Animais , Linhagem Celular , Sobrevivência Celular/imunologia , Chlorocebus aethiops , Doença Crônica , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Deleção de Genes , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Células Vero , Receptor fas/genética , Receptor fas/metabolismo
17.
Nature ; 455(7216): 1109-13, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18806780

RESUMO

Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing beta-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.


Assuntos
Bactérias/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Imunidade Inata/imunologia , Intestinos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/genética , Feminino , Imunidade Inata/genética , Interferon gama/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/genética , Filogenia , Organismos Livres de Patógenos Específicos , Fatores de Tempo
18.
Cell Host Microbe ; 31(2): 213-227.e9, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603588

RESUMO

Diet and commensals can affect the development of autoimmune diseases like type 1 diabetes (T1D). However, whether dietary interventions are microbe-mediated was unclear. We found that a diet based on hydrolyzed casein (HC) as a protein source protects non-obese diabetic (NOD) mice in conventional and germ-free (GF) conditions via improvement in the physiology of insulin-producing cells to reduce autoimmune activation. The addition of gluten (a cereal protein complex associated with celiac disease) facilitates autoimmunity dependent on microbial proteolysis of gluten: T1D develops in GF animals monocolonized with Enterococcus faecalis harboring secreted gluten-digesting proteases but not in mice colonized with protease deficient bacteria. Gluten digestion by E. faecalis generates T cell-activating peptides and promotes innate immunity by enhancing macrophage reactivity to lipopolysaccharide (LPS). Gnotobiotic NOD Toll4-negative mice monocolonized with E. faecalis on an HC + gluten diet are resistant to T1D. These findings provide insights into strategies to develop dietary interventions to help protect humans against autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 1/prevenção & controle , Glutens , Camundongos Endogâmicos NOD , Proteólise , Dieta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa