RESUMO
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
Assuntos
Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Envelhecimento Cognitivo , Células Piramidais/patologia , Sinapses/patologia , Animais , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344RESUMO
Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.
Assuntos
Transtorno Depressivo Maior , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismoRESUMO
Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.
Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , OócitosRESUMO
A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.
Assuntos
Doenças Desmielinizantes , Epilepsia Tipo Ausência , Animais , Córtex Cerebral/fisiologia , Cuprizona/metabolismo , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Neurônios/fisiologia , Nucleotídeos Cíclicos/metabolismo , Convulsões , Tálamo/fisiologiaRESUMO
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Assuntos
Coração/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Animais , Deleção de Genes , Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Peroxinas/genética , Mapas de Interação de Proteínas , RNA Mensageiro/genéticaRESUMO
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Assuntos
Epilepsia do Lobo Temporal/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Ácido Caínico , Proteínas de Membrana/química , Camundongos Endogâmicos C57BL , Peroxinas/química , Fosforilação , Fosfosserina/metabolismo , Subunidades Proteicas/química , Ratos Sprague-Dawley , Reprodutibilidade dos TestesRESUMO
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Modelos Animais , Rede Nervosa/diagnóstico por imagem , Tremor/diagnóstico por imagem , Animais , Encéfalo/fisiopatologia , Drosophila , Prova Pericial/normas , Haplorrinos , Camundongos , Rede Nervosa/fisiopatologia , Ratos , Suínos , Tremor/fisiopatologiaRESUMO
Tetratricopeptide repeat (TPR) domains are ubiquitous structural motifs that mediate protein-protein interactions. For example, the TPR domains in the peroxisomal import receptor PEX5 enable binding to a range of type 1 peroxisomal targeting signal motifs. A homolog of PEX5, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), binds to and functions as an auxiliary subunit of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Given the similarity between TRIP8b and PEX5, this difference in function raises the question of what mechanism accounts for their binding specificity. In this report, we found that the cyclic nucleotide-binding domain and the C terminus of the HCN channel are critical for conferring specificity to TRIP8b binding. We show that TRIP8b binds the HCN cyclic nucleotide-binding domain through a 37-residue domain and the HCN C terminus through the TPR domains. Using a combination of fluorescence polarization- and co-immunoprecipitation-based assays, we establish that binding at either site increases affinity at the other. Thus, allosteric coupling of the TRIP8b TPR domains both promotes binding to HCN channels and limits binding to type 1 peroxisomal targeting signal substrates. These results raise the possibility that other TPR domains may be similarly influenced by allosteric mechanisms as a general feature of protein-protein interactions.
Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Subunidades Proteicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação Alostérica/fisiologia , Sítios de Ligação , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Subunidades Proteicas/genética , Receptores Citoplasmáticos e Nucleares/genéticaRESUMO
Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (Ih ) in the CA1 area increases with chronic mild stress. Reduction of Ih in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of Ih is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in Ih in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.
Assuntos
Adaptação Psicológica/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Comportamento Exploratório , Hipocampo/citologia , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Masculino , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Peroxinas/genética , Células Piramidais/metabolismo , Natação/psicologiaRESUMO
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Assuntos
Doença de Alzheimer/fisiopatologia , Região CA1 Hipocampal/fisiologia , Canalopatias/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Potenciais de Ação , Envelhecimento , Animais , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Retículo Endoplasmático/fisiologia , Feminino , Masculino , Camundongos Transgênicos , Células Piramidais/ultraestruturaRESUMO
Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.
Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Proteínas de Membrana/deficiência , Neurônios/fisiologia , Tálamo/fisiopatologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletrocardiografia , Eletrocorticografia , Eletrodos Implantados , Epilepsia Tipo Ausência/genética , Imuno-Histoquímica , Masculino , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos Knockout , Atividade Motora/fisiologia , Técnicas de Patch-Clamp , Peroxinas , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Técnicas de Cultura de TecidosRESUMO
HCN channels are important regulators of neuronal excitability. The proper function of these channels is governed by various mechanisms, including post-translational modifications of channel subunits. Here, we provide evidence that ubiquitination via a ubiquitin ligase, neuronal precursor cell expressed developmentally downregulated (Nedd)-4-2, is involved in the regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We identified a PY motif (L/PPxY), the characteristic binding motif for Nedd4-2 in the C terminus of the HCN1 subunit, and showed that HCN1 and Nedd4-2 interacted both in vivo (rat hippocampus, neocortex, and cerebellum) and in vitro [human embryonic kidney 293 (HEK293) cells], resulting in increased HCN1 ubiquitination. Elimination of the PY motif reduced, but did not abolish, Nedd4-2 binding, which further involved a stretch of â¼100 aa downstream in the HCN1 C terminus. Coexpression of Nedd4-2 and HCN1 drastically reduced the HCN1-mediated h-current amplitude (85-92%) in Xenopus laevis oocytes and reduced surface expression (34%) of HCN1 channels in HEK293 cells, thereby opposing effects of tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b)-(1a-4), an auxiliary subunit that promotes HCN1 surface expression. Regulation may further include N-glycosylation of HCN1 channels, which is significantly enhanced by TRIP8b(1a-4), but may be reduced by Nedd4-2. Taken together, our data indicate that Nedd4-2 plays an important role in the regulation of HCN1 trafficking and may compete with TRIP8b(1a-4) in this process.
Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Regulação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Motivos de Aminoácidos , Animais , Encéfalo/metabolismo , Regulação para Baixo , Eletrofisiologia , Feminino , Glicosilação , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/citologia , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Xenopus , Xenopus laevisRESUMO
Ion channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons. TRIP8b interacts with the carboxyl-terminal region of HCN channels and regulates their cell-surface expression level and cyclic nucleotide dependence. Here we examine the molecular determinants of TRIP8b binding to HCN2 channels. Using a single-molecule fluorescence bleaching method, we found that TRIP8b and HCN2 form an obligate 4:4 complex in intact channels. Fluorescence-detection size-exclusion chromatography and fluorescence anisotropy allowed us to confirm that two different domains in the carboxyl-terminal portion of TRIP8b--the tetratricopepide repeat region and the TRIP8b conserved region--interact with two different regions of the HCN carboxyl-terminal region: the carboxyl-terminal three amino acids (SNL) and the cyclic nucleotide-binding domain, respectively. And finally, using X-ray crystallography, we determined the atomic structure of the tetratricopepide region of TRIP8b in complex with a peptide of the carboxy-terminus of HCN2. Together, these experiments begin to uncover the mechanism for TRIP8b binding and regulation of HCN channels.
Assuntos
Canais Iônicos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Cromatografia em Gel , Cristalografia , Polarização de Fluorescência , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Oócitos , Técnicas de Patch-Clamp , Canais de Potássio , Ligação Proteica , Difração de Raios X , XenopusRESUMO
Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.
RESUMO
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are subthreshold activated voltage-gated ion channels. In the cortex, these channels are predominantly expressed in dendrites where they significantly modify dendritic intrinsic excitability as well synaptic potential shapes and integration. HCN channel trafficking to dendrites is regulated by the protein, TRIP8b. Additionally, altered TRIP8b expression may be one mechanism underlying seizure-induced dendritic HCN channel plasticity. HCN channels, though, are also located in certain mature cortical synaptic terminals, where they play a vital role in modulating synaptic transmission. In this study, using electrophysiological recordings as well as electron microscopy we show that presynaptic, but not dendritic, cortical HCN channel expression and function is comparable in adult TRIP8b-null mice and wild-type littermates. We further investigated whether presynaptic HCN channels undergo seizure-dependent plasticity. We found that, like dendritic channels, wild-type presynaptic HCN channel function was persistently decreased following induction of kainic acid-induced seizures. Since TRIP8b does not affect presynaptic HCN subunit trafficking, seizure-dependent plasticity of these cortical HCN channels is not conditional upon TRIP8b. Our results, thus, suggest that the molecular mechanisms underlying HCN subunit targeting, expression and plasticity in adult neurons is compartment selective, providing a means by which pre- and postsynaptic processes that are critically dependent upon HCN channel function may be distinctly influenced.
Assuntos
Córtex Cerebral/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Córtex Cerebral/ultraestrutura , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peroxinas , Canais de Potássio/deficiência , Transporte Proteico/fisiologia , Distribuição AleatóriaRESUMO
The dorsoventral and developmental gradients of entorhinal layer II cell grid properties correlate with their resonance properties and with their hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel current characteristics. We investigated whether such correlation existed in rat hippocampal CA1 pyramidal cells, where place fields also show spatial and temporal gradients. Resonance was absent during the first postnatal week, and emerged during the second week. Resonance was stronger in dorsal than ventral cells, in accord with HCN current properties. Resonance responded to cAMP in ventral but not in dorsal cells. The dorsoventral distribution of HCN1 and HCN2 subunits and of the auxiliary protein tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) could account for these differences between dorsal and ventral cells. The analogous distribution of the intrinsic properties of entorhinal stellate and hippocampal cells suggests the existence of general rules of organization among structures that process complementary features of the environment.
Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Células Piramidais/citologia , Células Piramidais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos WistarRESUMO
The dorsal and ventral regions of the hippocampus perform different functions. Whether the integrative properties of hippocampal cells reflect this heterogeneity is unknown. We focused on dendrites where most synaptic input integration takes place. We report enhanced backpropagation and theta resonance and decreased summation of synaptic inputs in ventral versus dorsal CA1 pyramidal cell distal dendrites. Transcriptional Kv4.2 down-regulation and post-transcriptional hyperpolarization-activated cyclic AMP-gated channel (HCN1/2) up-regulation may underlie these differences, respectively. Our results reveal differential dendritic integrative properties along the dorso-ventral axis, reflecting diverse computational needs.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/biossíntese , Dendritos/metabolismo , Regulação para Baixo/fisiologia , Canais Iônicos/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Canais de Potássio/biossíntese , Células Piramidais/metabolismo , Canais de Potássio Shal/biossíntese , Regulação para Cima/fisiologia , Animais , Dendritos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Especificidade de Órgãos , Células Piramidais/citologia , Ratos , Transcrição Gênica/fisiologiaRESUMO
Hyperpolarization-activated cyclic nucleotide-gated nonselective cation channels (HCN or h-channels) are important regulators of neuronal physiology contributing to passive membrane properties, such as resting membrane potential and input resistance (R(N)), and to intrinsic oscillatory activity and synaptic integration. The correct membrane targeting of h-channels is regulated in part by the auxiliary h-channel protein TRIP8b. The genetic deletion of TRIP8b results in a loss of functional h-channels, which affects the postsynaptic integrative properties of neurons. We investigated the impact of TRIP8b deletion on long-term potentiation (LTP) at the two major excitatory inputs to CA1 pyramidal neurons: Schaffer collateral (SC) and perforant path (PP). We found that SC LTP was not significantly different between neurons from wild-type and TRIP8b-knockout mice. There was, however, significantly more short-term potentiation in knockout neurons. We also found that the persistent increase in h-current (I(h)) that normally occurs after LTP induction was absent in knockout neurons. The lack of I(h) plasticity was not restricted to activity-dependent induction, because the depletion of intracellular calcium stores also failed to produce the expected increase in I(h). Interestingly, pairing of SC and PP inputs resulted in a form of LTP in knockout neurons that did not occur in wild-type neurons. These results suggest that the physiological impact of TRIP8b deletion is not restricted to the integrative properties of neurons but also includes both synaptic and intrinsic plasticity.
Assuntos
Região CA1 Hipocampal/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Potenciação de Longa Duração , Proteínas de Membrana/metabolismo , Células Piramidais/fisiologia , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Via Perfurante/fisiologia , Peroxinas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismoRESUMO
The rodent hippocampus can be divided into dorsal (DHC) and ventral (VHC) domains on the basis of behavioral, anatomical, and biochemical differences. Recently, we reported that CA1 pyramidal neurons from the VHC were intrinsically more excitable than DHC neurons, but the specific ionic conductances contributing to this difference were not determined. Here we investigated the hyperpolarization-activated current (I(h)) and the expression of HCN1 and HCN2 channel subunits in CA1 pyramidal neurons from the DHC and VHC. Measurement of Ih with cell-attached patches revealed a significant depolarizing shift in the V(1/2) of activation for dendritic h-channels in VHC neurons (but not DHC neurons), and ultrastructural immunolocalization of HCN1 and HCN2 channels revealed a significantly larger HCN1-to-HCN2 ratio for VHC neurons (but not DHC neurons). These observations suggest that a shift in the expression of HCN1 and HCN2 channels drives functional changes in I(h) for VHC neurons (but not DHC neurons) and could thereby significantly alter the capacity for dendritic integration of these neurons.
Assuntos
Região CA1 Hipocampal/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Canais de Potássio/metabolismo , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Especificidade de Órgãos , Canais de Potássio/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células Piramidais/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Output properties of neurons are greatly shaped by voltage-gated ion channels, whose biophysical properties and localization within axodendritic compartments serve to significantly transform the original input. The hyperpolarization-activated current, I(h), is mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and plays a fundamental role in influencing neuronal excitability by regulating both membrane potential and input resistance. In neurons such as cortical and hippocampal pyramidal neurons, the subcellular localization of HCN channels plays a critical functional role, yet mechanisms controlling HCN channel trafficking are not fully understood. Because ion channel function and localization are often influenced by interacting proteins, we generated a knock-out mouse lacking the HCN channel auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Eliminating expression of TRIP8b dramatically reduced I(h) expression in hippocampal pyramidal neurons. Loss of I(h)-dependent membrane voltage properties was attributable to reduction of HCN channels on the neuronal surface, and there was a striking disruption of the normal expression pattern of HCN channels in pyramidal neuron dendrites. In heterologous cells and neurons, absence of TRIP8b increased HCN subunit targeting to and degradation by lysosomes. Mice lacking TRIP8b demonstrated motor learning deficits and enhanced resistance to multiple tasks of behavioral despair with high predictive validity for antidepressant efficacy. We observed similar resistance to behavioral despair in distinct mutant mice lacking HCN1 or HCN2. These data demonstrate that interaction with the auxiliary subunit TRIP8b is a major mechanism underlying proper expression of HCN channels and I(h) in vivo, and suggest that targeting I(h) may provide a novel approach to treatment of depression.