Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 122024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787378

RESUMO

Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.


Assuntos
Vírus da Dengue , Dengue , Lipoproteínas HDL , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Animais , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Chlorocebus aethiops , Camundongos , Humanos , Lipoproteínas HDL/metabolismo , Células Vero , Dengue/virologia , Dengue/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Multimerização Proteica , Microscopia Crioeletrônica
2.
Curr Opin Virol ; 59: 101305, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870091

RESUMO

Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on the recent advances in understanding viral nonstructural (NS) proteins as antiviral drug targets. We briefly summarize the experimental structures and predicted models of flaviviral NS proteins and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins and provide an update about the latest development. NS4B emerges as one of the most promising drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other pathogenic flaviviruses may be available very soon.


Assuntos
Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Antivirais/uso terapêutico , Replicação Viral , Proteínas não Estruturais Virais , Infecção por Zika virus/tratamento farmacológico
3.
Comput Struct Biotechnol J ; 21: 2137-2146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007650

RESUMO

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections. Treatment of P. aeruginosa infections is difficult given its multiple virulence mechanisms, intrinsic antibiotic resistance mechanisms, and biofilm-forming ability. Auranofin, an approved oral gold compound for rheumatoid arthritis treatment, was recently reported to inhibit the growth of multiple bacterial species. Here, we identify P. aeruginosa's global virulence factor regulator Vfr as one target of auranofin. We report the mechanistic insights into the inhibitory mechanism of auranofin and gold(I) analogues to Vfr through structural, biophysical, and phenotypic inhibition studies. This work suggests that auranofin and gold(I) analogues have potential to be developed as anti-virulence drugs against P. aeruginosa.

4.
Nat Protoc ; 18(9): 2671-2698, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567932

RESUMO

Chemical modifications of transcripts with a 5' cap occur in all organisms and function in many aspects of RNA metabolism. To facilitate analysis of RNA caps, we developed a systems-level mass spectrometry-based technique, CapQuant, for accurate and sensitive quantification of the cap epitranscriptome. The protocol includes the addition of stable isotope-labeled cap nucleotides (CNs) to RNA, enzymatic hydrolysis of endogenous RNA to release CNs, and off-line enrichment of CNs by ion-pairing high-pressure liquid chromatography, followed by a 17 min chromatography-coupled tandem quadrupole mass spectrometry run for the identification and quantification of individual CNs. The total time required for the protocol can be up to 7 d. In this approach, 26 CNs can be quantified in eukaryotic poly(A)-tailed RNA, bacterial total RNA and viral RNA. This protocol can be modified to analyze other types of RNA and RNA from in vitro sources. CapQuant stands out from other methods in terms of superior specificity, sensitivity and accuracy, and it is not limited to individual caps nor does it require radiolabeling. Thanks to its unique capability of accurately and sensitively quantifying RNA caps on a systems level, CapQuant can reveal both the RNA cap landscape and the transcription start site distribution of capped RNA in a broad range of settings.


Assuntos
Capuzes de RNA , Espectrometria de Massas em Tandem , Capuzes de RNA/genética , RNA Mensageiro/genética , Cromatografia Líquida de Alta Pressão , RNA Viral/genética , RNA Bacteriano
5.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891424

RESUMO

Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Domínio Catalítico , Flavivirus/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética , Zika virus/metabolismo
6.
FEBS Lett ; 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32279326

RESUMO

The synthesis of asparagine (Asn)-tRNAAsn in most prokaryotes uses an indirect aminoacylation pathway involving a nondiscriminating aspartyl synthetase (ND-AspRS) and a glutamine amidotransferase (GatCAB). This was recently implicated as an adaptive mistranslation mechanism for antimicrobial resistance in Mycobacterium tuberculosis, but it remains poorly understood. We report an accessible liquid chromatography-mass spectrometry method with unparalleled chemical specificity, sensitivity, and quantification over the current assays to enable the direct analysis and drug screening campaigns of this pathway. Through this method, we show that the mycobacterial ND-AspRS stimulates the glutaminase activity of GatCAB. We further uncover novel glutaminase activity of the synthetase. These biological insights help better understand the indirect aminoacylation biology and allude to new roles beyond protein translation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa