RESUMO
Physiological research suggests that tropical insects are particularly sensitive to temperature, but information on their responses to climate change has been lacking-even though the majority of all terrestrial species are insects and their diversity is concentrated in the tropics. Here, we provide evidence that tropical insect species have already undertaken altitude increases, confirming the global reach of climate change impacts on biodiversity. In 2007, we repeated a historical altitudinal transect, originally carried out in 1965 on Mount Kinabalu in Borneo, sampling 6 moth assemblages between 1,885 and 3,675 m elevation. We estimate that the average altitudes of individuals of 102 montane moth species, in the family Geometridae, increased by a mean of 67 m over the 42 years. Our findings indicate that tropical species are likely to be as sensitive as temperate species to climate warming, and we urge ecologists to seek other historic tropical samples to carry out similar repeat surveys. These observed changes, in combination with the high diversity and thermal sensitivity of insects, suggest that large numbers of tropical insect species could be affected by climate warming. As the highest mountain in one of the most biodiverse regions of the world, Mount Kinabalu is a globally important refuge for terrestrial species that become restricted to high altitudes by climate warming.
Assuntos
Altitude , Mariposas/fisiologia , Clima Tropical , Animais , Bornéu , Mariposas/classificação , Especificidade da EspécieRESUMO
Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.
RESUMO
Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.