Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Evol ; 37(11): 3353-3362, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895716

RESUMO

There are known limitations in methods of detecting positive selection. Common methods do not enable differentiation between positive selection and compensatory covariation, a major limitation. Further, the traditional method of calculating the ratio of nonsynonymous to synonymous substitutions (dN/dS) does not take into account the 3D structure of biomacromolecules nor differences between amino acids. It also does not account for saturation of synonymous mutations (dS) over long evolutionary time that renders codon-based methods ineffective for older divergences. This work aims to address these shortcomings for detecting positive selection through the development of a statistical model that examines clusters of substitutions in clusters of variable radii. Additionally, it uses a parametric bootstrapping approach to differentiate positive selection from compensatory processes. A previously reported case of positive selection in the leptin protein of primates was reexamined using this methodology.


Assuntos
Evolução Molecular , Modelos Estatísticos , Conformação Proteica , Seleção Genética , Mutação Silenciosa , Animais , Leptina/genética , Primatas/genética , Software
2.
J Mol Evol ; 89(8): 554-564, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341836

RESUMO

Gene duplication is a fundamental process that has the potential to drive phenotypic differences between populations and species. While evolutionarily neutral changes have the potential to affect phenotypes, detecting selection acting on gene duplicates can uncover cases of adaptive diversification. Existing methods to detect selection on duplicates work mostly inter-specifically and are based upon selection on coding sequence changes, here we present a method to detect selection directly on a copy number variant segregating in a population. The method relies upon expected relationships between allele (new duplication) age and frequency in the population dependent upon the effective population size. Using both a haploid and a diploid population with a Moran Model under several population sizes, the neutral baseline for copy number variants is established. The ability of the method to reject neutrality for duplicates with known age (measured in pairwise dS value) and frequency in the population is established through mathematical analysis and through simulations. Power is particularly good in the diploid case and with larger effective population sizes, as expected. With extension of this method to larger population sizes, this is a tool to analyze selection on copy number variants in any natural or experimentally evolving population. We have made an R package available at https://github.com/peterbchi/CNVSelectR/ which implements the method introduced here.


Assuntos
Diploide , Duplicação Gênica , Alelos , Fenótipo , Seleção Genética
3.
Proteins ; 86(2): 218-228, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178386

RESUMO

Improvements in the description of amino acid substitution are required to develop better pseudo-energy-based protein structure-aware models for use in phylogenetic studies. These models are used to characterize the probabilities of amino acid substitution and enable better simulation of protein sequences over a phylogeny. A better characterization of amino acid substitution probabilities in turn enables numerous downstream applications, like detecting positive selection, ancestral sequence reconstruction, and evolutionarily-motivated protein engineering. Many existing Markov models for amino acid substitution in molecular evolution disregard molecular structure and describe the amino acid substitution process over longer evolutionary periods poorly. Here, we present a new model upgraded with a site-specific parameterization of pseudo-energy terms in a coarse-grained force field, which describes local heterogeneity in physical constraints on amino acid substitution better than a previous pseudo-energy-based model with minimum cost in runtime. The importance of each weight term parameterization in characterizing underlying features of the site, including contact number, solvent accessibility, and secondary structural elements was evaluated, returning both expected and biologically reasonable relationships between model parameters. This results in the acceptance of proposed amino acid substitutions that more closely resemble those observed site-specific frequencies in gene family alignments. The modular site-specific pseudo-energy function is made available for download through the following website: https://liberles.cst.temple.edu/Software/CASS/index.html.


Assuntos
Substituição de Aminoácidos , Evolução Molecular , Modelos Genéticos , Proteínas/genética , Algoritmos , Sequência de Aminoácidos , Animais , Humanos , Conformação Proteica , Proteínas/química , Termodinâmica , Domínios de Homologia de src
4.
BMC Genomics ; 19(1): 835, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463511

RESUMO

BACKGROUND: Helicobacter pylori is a human stomach pathogen, naturally-competent for DNA uptake, and prone to homologous recombination. Extensive homoplasy (i.e., phylogenetically-unlinked identical variations) observed in H. pylori genes is considered a hallmark of such recombination. However, H. pylori also exhibits a high mutation rate. The relative adaptive role of homologous recombination and mutation in species diversity is a highly-debated issue in biology. Recombination results in homoplasy. While convergent mutation can also account for homoplasy, its contribution is thought to be minor. We demonstrate here that, contrary to dogma, convergent mutation is a key contributor to Helicobacter pylori homoplasy, potentially driven by adaptive evolution of proteins. RESULTS: Our present genome-wide analysis shows that homoplastic nonsynonymous (amino acid replacement) changes are not typically accompanied by homoplastic synonymous (silent) variations. Moreover, the majority of the codon positions with homoplastic nonsynonymous changes also contain different (i.e. non-homoplastic) nonsynonymous changes arising from mutation only. This indicates that, to a considerable extent, nonsynonymous homoplasy is due to convergent mutations. High mutation rate or limited availability of evolvable sites cannot explain this excessive convergence, as suggested by our simulation studies. Rather, the genes with convergent mutations are overrepresented in distinct functional categories, suggesting possible selective responses to conditions such as distinct micro-niches in single hosts, and to differences in host genotype, physiology, habitat and diet. CONCLUSIONS: We propose that mutational convergence is a key player in H. pylori's adaptation and extraordinary persistence in human hosts. High frequency of mutational convergence could be due to saturation of evolvable sites capable of responding to selection pressures, while the number of mutable residues is far from saturation. We anticipate a similar scenario of mutational vs. recombinational genome dynamics or plasticity for other naturally competent microbes where strong positive selection could favor frequent convergent mutations in adaptive protein evolution.


Assuntos
Evolução Biológica , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Recombinação Genética , Estômago/microbiologia , Variação Genética , Genoma Bacteriano , Helicobacter pylori/patogenicidade , Humanos , Filogenia , Seleção Genética
5.
BMC Evol Biol ; 17(1): 117, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545395

RESUMO

BACKGROUND: Understanding the genotype-phenotype map is fundamental to our understanding of genomes. Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic pathways, flux through the pathway is an important next layer of biological organization up from the individual gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to contrast with those under stabilizing selection. RESULTS: Depending upon the underlying population genetic regime, fluctuating population size was found to increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local adaptation of the population. Further, during positive directional selection, as with more complex mutational scenarios, an increase in the observation of inter-molecular co-evolution was observed. CONCLUSIONS: Differences in patterns of evolution when systems are in and out of equilibrium, including during positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in changes in phenotypes.


Assuntos
Evolução Biológica , Genética Populacional , Redes e Vias Metabólicas , Modelos Biológicos , Adaptação Fisiológica , Mutação , Densidade Demográfica , Seleção Genética
6.
Stat Appl Genet Mol Biol ; 14(4): 375-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26061623

RESUMO

When estimating a phylogeny from a multiple sequence alignment, researchers often assume the absence of recombination. However, if recombination is present, then tree estimation and all downstream analyses will be impacted, because different segments of the sequence alignment support different phylogenies. Similarly, convergent selective pressures at the molecular level can also lead to phylogenetic tree incongruence across the sequence alignment. Current methods for detection of phylogenetic incongruence are not equipped to distinguish between these two different mechanisms and assume that the incongruence is a result of recombination or other horizontal transfer of genetic information. We propose a new recombination detection method that can make this distinction, based on synonymous codon substitution distances. Although some power is lost by discarding the information contained in the nonsynonymous substitutions, our new method has lower false positive probabilities than the comparable recombination detection method when the phylogenetic incongruence signal is due to convergent evolution. We apply our method to three empirical examples, where we analyze: (1) sequences from a transmission network of the human immunodeficiency virus, (2) tlpB gene sequences from a geographically diverse set of 38 Helicobacter pylori strains, and (3) hepatitis C virus sequences sampled longitudinally from one patient.


Assuntos
Evolução Molecular , Modelos Genéticos , Recombinação Genética , Algoritmos , Simulação por Computador , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Hepacivirus/genética , Hepatite C/virologia , Humanos , Modelos Estatísticos , Filogenia
7.
Protein Sci ; 25(7): 1168-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26808055

RESUMO

Characterizing the probabilities of observing amino acid substitutions at specific sites in a protein over evolutionary time is a major goal in the field of molecular evolution. While purely statistical approaches at different levels of complexity exist, approaches rooted in underlying biological processes are necessary to characterize both the context-dependence of sequence changes (epistasis) and to extrapolate to sequences not observed in biological databases. To develop such approaches, an understanding of the different selective forces that act on amino acid substitution is necessary. Here, an overview of selection on and corresponding modeling of folding stability, folding specificity, binding affinity and specificity for ligands, the evolution of new binding sites on protein surfaces, protein dynamics, intrinsic disorder, and protein aggregation as well as the interplay with protein expression level (concentration) and biased mutational processes are presented.


Assuntos
Sequência de Aminoácidos , Proteínas/química , Proteínas/genética , Substituição de Aminoácidos , Sítios de Ligação , Evolução Molecular , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína
8.
Biol Direct ; 11: 31, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27393343

RESUMO

BACKGROUND: While commonly assumed in the biochemistry community that the control of metabolic pathways is thought to be critical to cellular function, it is unclear if metabolic pathways generally have evolutionarily stable rate limiting (flux controlling) steps. RESULTS: A set of evolutionary simulations using a kinetic model of a metabolic pathway was performed under different conditions to evaluate the evolutionary stability of rate limiting steps. Simulations used combinations of selection for steady state flux, selection against the cost of molecular biosynthesis, and selection against the accumulation of high concentrations of a deleterious intermediate. Two mutational regimes were used, one with mutations that on average were neutral to molecular phenotype and a second with a preponderance of activity-destroying mutations. The evolutionary stability of rate limiting steps was low in all simulations with non-neutral mutational processes. Clustering of parameter co-evolution showed divergent inter-molecular evolutionary patterns under different evolutionary regimes. CONCLUSIONS: This study provides a null model for pathway evolution when compensatory processes dominate with potential applications to predicting pathway functional change. This result also suggests a possible mechanism in which studies in statistical genetics that aim to associate a genotype to a phenotype assuming independent action of variants may be mis-specified through a mis-characterization of the link between individual gene function and pathway function. A better understanding of the genotype-phenotype map has potential applications in differentiating between compensatory changes and directional selection on pathways as well as detecting SNPs and fixed differences that might have phenotypic effects. REVIEWERS: This article was reviewed by Arne Elofsson, David Ardell, and Shamil Sunyaev.


Assuntos
Enzimas/genética , Deriva Genética , Redes e Vias Metabólicas , Mutação , Seleção Genética , Evolução Biológica , Evolução Molecular , Redes e Vias Metabólicas/genética , Modelos Genéticos
9.
PeerJ ; 2: e373, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860700

RESUMO

We examine heritability estimation of an ordinal trait for osteoarthritis, using a population of pig-tailed macaques from the Washington National Primate Research Center (WaNPRC). This estimation is non-trivial, as the data consist of ordinal measurements on 16 intervertebral spaces throughout each macaque's spinal cord, with many missing values. We examine the resulting heritability estimates from different model choices, and also perform a simulation study to compare the performance of heritability estimation with these different models under specific known parameter values. Under both the real data analysis and the simulation study, we find that heritability estimates from an assumption of normality of the trait differ greatly from those of ordered probit regression, which considers the ordinality of the trait. This finding indicates that some caution should be observed regarding model selection when estimating heritability of an ordinal quantity. Furthermore, we find evidence that our real data have little information for valid heritability estimation under ordered probit regression. We thus conclude with an exploration of sample size requirements for heritability estimation under this model. For an ordinal trait, an incorrect assumption of normality can lead to severely biased heritability estimation. Sample size requirements for heritability estimation of an ordinal trait under the threshold model depends on the pedigree structure, trait distribution and the degree of relatedness between each phenotyped individual. Our sample of 173 monkeys did not have enough information from which to estimate heritability, but estimable heritability can be obtained with as few as 180 related individuals under certain scenarios examined here.

10.
Genet Epidemiol ; 30(7): 609-19, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16830339

RESUMO

Few comparison studies have been performed on single nucleotide polymorphism (SNP) tagging methods to examine their consistency and effectiveness in terms of inferences about association with disease. We applied several SNP tagging methods to SNPs on chromosome 12q (n=713) and compared the utility of these methods to detect association for asthma and serum IgE levels among a sample of African Caribbean families from Barbados selected through asthmatic probands. We found that a high level of information regarding association is retained in Clayton's htSNP, Stram's TagSNP, and de Bakker's Tagger. We also found a high degree of consistency between TagSNP and Tagger. Using this set of 713 SNPs on chromosome 12q, our study provides insight towards analytic strategies for future studies of complex traits.


Assuntos
Asma/genética , População Negra/genética , Cromossomos Humanos Par 12/genética , Imunoglobulina E/sangue , Polimorfismo de Nucleotídeo Único/genética , Barbados , Humanos , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa