Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(16): 7276-7282, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32250611

RESUMO

Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under ≥45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.

2.
ACS Appl Mater Interfaces ; 16(7): 8783-8790, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335216

RESUMO

In recent years, lithium oxygen batteries (Li-O2) have received considerable research attention due to their extremely high energy density. However, the poor conductivity and ion conductivity of the discharge product lithium peroxide (Li2O2) result in a high charging overpotential, poor cycling stability, and low charging rate. Therefore, studying and improving catalysts is a top priority. This study focuses on the commonly used heterogeneous catalyst ruthenium (Ru). The local distribution of this catalyst is controlled by using sputtering technology. Moreover, X-ray nanodiffraction is applied to observe the relationship between the decomposition of Li2O2 and the local distribution of Ru. Results show that Li2O2 decomposes homogeneously in liquid systems and heterogeneously in solid-state systems. This study finds that the catalytic effect of Ru is related to electrolyte decomposition and that its soluble byproducts act as electron acceptors or redox mediators, effectively reducing charging overpotential but also shortening the cycle life.

3.
Adv Mater ; 36(18): e2309019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38262625

RESUMO

The application of solid-state electrolytes in Li batteries is hampered by the occurrence of Li-dendrite-caused short circuits. To avoid cell failure, the electrolytes can only be stressed with rather low current densities, severely restricting their performance. As grain size and pore distributions significantly affect dendrite growth in ceramic electrolytes such as Li7La3Zr2O12 and its variants; here, a "detour and buffer" strategy to bring the superiority of both coarse and fine grains into play, is proposed. To validate the mechanism, a coarse/fine bimodal grain microstructure is obtained by seeding unpulverized large particles in the green body. The rearrangement of coarse grains and fine pores is fine-tuned by changing the ratio of pulverized and unpulverized powders. The optimized bimodal microstructure, obtained when the two powders are equally mixed, allows, without extra interface decoration, cycling for over 2000 h as the current density is increased from 1.0 mA·cm-2, and gradually, up to 2.0 mA·cm-2. The "detour and buffer" effects are confirmed from postmortem analysis. The complex grain boundaries formed by fine grains discourage the direct infiltration of Li. Simultaneously, the coarse grains further increase the tortuosity of the Li path. This study sheds light on the microstructure optimization for the polycrystalline solid-state electrolytes.

4.
Nat Commun ; 14(1): 7549, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985662

RESUMO

Carbon-defect engineering in metal single-atom catalysts by simple and robust strategy, boosting their catalytic activity, and revealing the carbon defect-catalytic activity relationship are meaningful but challenging. Herein, we report a facile self-carbon-thermal-reduction strategy for carbon-defect engineering of single Fe-N4 sites in ZnO-Carbon nano-reactor, as efficient catalyst in Fenton-like reaction for degradation of phenol. The carbon vacancies are easily constructed adjacent to single Fe-N4 sites during synthesis, facilitating the formation of C-O bonding and lowering the energy barrier of rate-determining-step during degradation of phenol. Consequently, the catalyst Fe-NCv-900 with carbon vacancies exhibits a much improved activity than the Fe-NC-900 without abundant carbon vacancies, with 13.5 times improvement in the first-order rate constant of phenol degradation. The Fe-NCv-900 shows high activity (97% removal ratio of phenol in only 5 min), good recyclability and the wide-ranging pH universality (pH range 3-9). This work not only provides a rational strategy for improving the Fenton-like activity of metal single-atom catalysts, but also deepens the fundamental understanding on how periphery carbon environment affects the property and performance of metal-N4 sites.

5.
ACS Nano ; 17(16): 16274-16286, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530418

RESUMO

Efficient and durable electrocatalysts with superior activity are needed for the production of green hydrogen with a high yield and low energy consumption. Electrocatalysts based on transition metal oxides hold dominance due to their abundant natural resources, regulable physical properties, and good adaptation to a solution. In numerous oxide catalyst materials, ferroelectrics, possessing semiconducting characteristics and switchable spontaneous polarization, have been considered promising photoelectrodes for solar water splitting. However, few investigations noted their potential as electrocatalysts. In this study, we report an efficient electrocatalytic electrode made of a BiFeO3/nickel foam heterostructure, which displays a smaller overpotential and higher current density than the blank nickel foam electrode. Moreover, when in contact with an alkaline solution, the bond between hydroxyls and the BiFeO3 surface induces a large area of upward self-polarization, lowering the adsorption energy of subsequent adsorbates and facilitating oxygen and hydrogen evolution reaction. Our work demonstrates an infrequent pathway of using functional semiconducting materials for exploiting highly efficient electrocatalytic electrodes.

6.
Chemosphere ; 337: 139357, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392801

RESUMO

The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.


Assuntos
Cádmio , Durapatita , Durapatita/química , Cádmio/química , Fósforo , Adsorção
7.
Nanomaterials (Basel) ; 13(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686957

RESUMO

X-ray nanodiffraction was used to measure the thermal stress of 10 µm nanotwinned Cu bumps in Cu/SiO2 hybrid structures at -55 °C, 27 °C, 100 °C, 150 °C, and 200 °C. Bonding can be achieved without externally applied compression. The X-ray beam size is about 100 nm in diameter. The Cu bump is dominated by (111) oriented nano-twins. Before the hybrid bonding, the thermal stress in Cu bumps is compressive and remains compressive after bonding. The average stress in the bonded Cu joint at 200 °C is as large as -169.1 MPa. In addition, using the strain data measured at various temperatures, one can calculate the effective thermal expansion coefficient (CTE) for the 10 µm Cu bumps confined by the SiO2 dielectrics. This study reports a useful approach on measuring the strain and stress in oriented metal bumps confined by SiO2 dielectrics. The results also provide a deeper understanding on the mechanism of hybrid bonding without externally applied compression.

8.
ACS Nano ; 17(7): 6555-6564, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36951422

RESUMO

Defect engineering is of great interest to the two-dimensional (2D) materials community. If nonmagnetic transition-metal dichalcogenides can possess room-temperature ferromagnetism (RTFM) induced by defects, then they will be ideal for application as spintronic materials and also for studying the relation between electronic and magnetic properties of quantum-confined structures. Thus, in this work, we aimed to study gamma-ray irradiation effects on MoS2, which is diamagnetic in nature. We found that gamma-ray exposure up to 9 kGy on few-layered (3.5 nm) MoS2 films induces an ultrahigh saturation magnetization of around 610 emu/cm3 at RT, whereas no significant changes were observed in the structure and magnetism of bulk MoS2 (40 nm) films even after gamma-ray irradiation. The RTFM in a few-layered gamma-ray irradiated sample is most likely due to the bound magnetic polaron created by the spin interaction of Mo 4d ions with trapped electrons present at sulfur vacancies. In addition, density functional theory (DFT) calculations suggest that the defect containing one Mo and two S vacancies is the dominant defect inducing the RTFM in MoS2. These DFT results are consistent with Raman, X-ray photoelectron spectroscopy, and ESR spectroscopy results, and they confirm the breakage of Mo and S bonds and the existence of vacancies after gamma-ray irradiation. Overall, this study suggests that the occurrence of magnetism in gamma-ray irradiated MoS2 few-layered films could be attributed to the synergistic effects of magnetic moments arising from the existence of both Mo and S vacancies as well as lattice distortion of the MoS2 structure.

9.
iScience ; 24(4): 102278, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817581

RESUMO

Nanotwin structures in materials engender fascinating exotic properties. However, twinning usually alter the crystal orientation, resulting in random orientation and limited performances. Here, we report a well-aligned rutile TiO2 nanotwin film with superior preferential orientation than its isostructural substrate. By means of the synchrotron X-ray Laue nanodiffraction technique, the crystal orientation, twin boundaries, and deviatoric stresses of the film were quantitatively imaged at unprecedented spatial resolution to unravel the underlying mechanism of this anomalous alignment. Massive {101}-type rutile nanotwins were observed, and a crystallographic relationship of the heteroepitaxy was proposed. The rapid twinning and twin-controlled heteroepitaxy are responsible for the texture improvement. This work would open up opportunities for rational design of better twin-based functional materials, and implies the powerful capabilities of X-ray nanodiffraction technique for multidisciplinary applications.

10.
Sci Rep ; 11(1): 22031, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764363

RESUMO

Cloud-to-ground lightning causes both high-temperature and high-pressure metamorphism of rocks, forming rock fulgurite. We demonstrate that a range of microstructural features indicative of high temperatures and pressures can form in fulgurites at the surface and in fractures up to several meters below the surface. In comparison to a granite reference sample collected from a borehole at a depth of 138 m, microstructures in both the surface and fracture fulgurite are characterized by: (i) the presence of glass, (ii) a phase transformation in K-feldspar with the presence of exsolution lamellae of plagioclase, and (iii) high residual stresses up to 1.5 GPa. Since this is the first time that fracture-related fulgurite has been described, we also carried out a 1-D numerical model to investigate the processes by which these can form. The model shows that the electric current density in fractures up to 40 m from the landing point can be as high as that on the surface, providing an explanation for the occurrence of fracture-related fulgurites. Our work broadens the near-surface environments in which rock fulgurite has been reported, and provides a detailed description of microstructures that can be compared to those formed during other types of extreme metamorphic events.

11.
ACS Nano ; 15(4): 6540-6550, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33784072

RESUMO

Silver-based nanomaterials have been versatile building blocks of various photoassisted energy applications; however, they have demonstrated poor electrochemical catalytic performance and stability, in particular, in acidic environments. Here we report a stable and high-performance electrochemical catalyst of silver telluride (AgTe) for the hydrogen evolution reaction (HER), which was synthesized with a nanoporous structure by an electrochemical synthesis method. X-ray spectroscopy techniques on the nanometer scale and high-resolution transmission electron microscopy revealed an orthorhombic structure of nanoporous AgTe with precise lattice constants. First-principles calculations show that the AgTe surface possesses highly active catalytic sites for the HER with an optimized Gibbs free energy change of hydrogen adsorption (-0.005 eV). Our nanoporous AgTe demonstrates exceptional stability and performance for the HER, an overpotential of 27 mV, and a Tafel slope of 33 mV/dec. As a stable catalyst for hydrogen production, AgTe is comparable to platinum-based catalysts and provides a breakthrough for high-performance electrochemical catalysts.

12.
ACS Nano ; 15(7): 12324-12333, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269062

RESUMO

Although high-entropy alloys have been intensively studied in the past decade, there are still many requirements for manufacturing processes and application directions to be proposed and developed, but most techniques are focused on high-entropy bulk materials and surface coatings. We fabricated high-entropy ceramic (HEC) nanomaterials using simple pulsed laser irradiation scanning on mixed salt solutions (PLMS method) under low-vacuum conditions. This method, allowing simple operation, rapid manufacturing, and low cost, is capable of using various metal salts as precursors and is also suitable for both flat and complicated 3D substrates. In this work, we engineered this PLMS method to fabricate high-entropy ceramic oxides containing four to seven elements. To address the catalytic performance of these HEC nanomaterials, we focused on CoCrFeNiAl high-entropy oxides applied to the oxygen-evolution reaction (OER), which is considered a sluggish process in water. We performed systematic material characterization to solve the complicated structure of the CoCrFeNiAl HEC as a spinel structure, AB2O4 (A, B = Co, Cr, Fe, Ni, or Al). Atoms in A and B sites in the spinel structure can be replaced with other elements; either divalent or trivalent metals can occupy the spinel lattice using this PLMS process. We applied this PLMS method to manufacture electrocatalytic CoCrFeNiAl HEC electrodes for the OER reaction, which displayed state-of-the-art activity and stability.

13.
ACS Appl Mater Interfaces ; 13(16): 18991-18998, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851818

RESUMO

Single crystal wafers, such as silicon, are the fundamental carriers of advanced electronic devices. However, these wafers exhibit rigidity without mechanical flexibility, limiting their applications in flexible electronics. Here, we propose a new approach to fabricate 1.5 in. flexible functional zinc oxide (ZnO) single crystal wafers with high electron mobility (>100 cm2 V-1 s-1) and optical transparency (>80%) by a combination of thin-film deposition, a chemical solution method, and surficial treatment. The uniformity of the flexible single crystal wafers is examined by an advanced scanning X-ray diffraction technique and photoluminescence spectroscopy. The transport properties of ZnO flexible single crystal wafers retain their pristine states under various bending conditions, including cyclability and endurability. This approach demonstrates a breakthrough in the fabrication of the flexible single crystal wafers for future flexible optoelectronic applications.

14.
ACS Appl Mater Interfaces ; 12(28): 32041-32053, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32400158

RESUMO

In this work, we demonstrated nano-scaled Laue diffractions by a focused polychromatic synchrotron radiation beam to discover what happens in MoS2 when van der Waals epitaxy is locally invalid. A stronger exciton recombination with a local charge depletion in the density of 1 × 1013 cm-2, extrapolated by Raman scattering and photoluminescence, occurs in grains, which exhibits a preferred orientation of 30° rotation with respect to the c-plane of a sapphire substrate. Else, the charge doping and trion recombination dominate instead. In addition to the breakthrough in extrapolating mesoscopic crystallographic characteristics, this work opens the feasibility to manipulate charge density by the selection of the substrate-induced disturbances without external treatment and doping. Practically, the 30° rotated orientation in bilayer MoS2 films is promoted on inclined facets in the patterned sapphire substrate, which exhibits a periodic array of charge depletion of about 1.65 × 1013 cm-2. The built-in manipulation of carrier concentrations could be a potential candidate to lateral and large-area electronics based on 2D materials.

15.
Sci Rep ; 9(1): 14788, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616021

RESUMO

We applied Simmons-Balluffi methods, positron measurements, and neutron diffraction to estimate the vacancy of CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) using Cu as a benchmark. The corresponding formation enthalpies and associated entropies of the HEAs and Cu were calculated. The vacancy-dependent effective free volumes in both CoCrFeNi and CoCrFeMnNi alloys are greater than those in Cu, implying the easier formation of vacancies by lattice structure relaxation of HEAs at elevated temperatures. Spatially resolved synchrotron X-ray measurements revealed different characteristics of CoCrFeNi and CoCrFeMnNi HEAs subjected to quasi-equilibrium conditions at high temperatures. Element-dependent behavior revealed by X-ray fluorescence (XRF) mapping indicates the effect of Mn on the Cantor Alloy.

16.
ACS Appl Mater Interfaces ; 8(36): 24152-60, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27505175

RESUMO

Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.

17.
Nanoscale ; 5(6): 2254-8, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400049

RESUMO

A series of rutile-type (Ti,Sn)O2 solid solutions with nanorod architecture were successfully synthesized in this study by varying their calcination temperatures of tin-modified titanium dioxide (Sn/TiO2) nanocomposites under a nitrogen atmosphere. During the delithiation process, the (Ti,Sn)O2 nanorods obtained at 500 °C delivered a specific capacity of about 300 mA h g(-1) and showed minimal capacity fading even at a high current density of 3 A g(-1).


Assuntos
Lítio/química , Nanotubos/química , Estanho/química , Titânio/química , Nanotubos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa