Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
2.
J Sep Sci ; 37(17): 2331-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24962011

RESUMO

Solanum somalense leaves, used in Djibouti for their medicinal properties, were extracted by MeOH. Because of the high polyphenol and flavonoid contents of the extract, respectively, determined at 80.80 ± 2.13 mg gallic acid equivalent/g dry weight and 24.4 ± 1.01 mg quercetin equivalent/g dry weight, the isolation and purification of the main polyphenols were carried out by silica gel column chromatography and centrifugal partition chromatography. Column chromatography led to 11 enriched fractions requiring further purification, while centrifugal partition chromatography allowed the easy recovery of the main compound of the extract. In a solvent system composed of CHCl3/MeOH/H2O (9.5:10:5), 21.8 mg of this compound at 97% purity was obtained leading to a yield of 2.63%. Its structure was established as 5-O-caffeoylshikimic acid by mass spectrometry and NMR spectroscopy. This work shows that S. somalense leaves contain very high level of 5-O-caffeoylshikimic acid (0.74% dry weight), making it a potential source of production of this secondary metabolite that is not commonly found in nature but could be partly responsible of the medicinal properties of S. somalense leaves.


Assuntos
Cromatografia/métodos , Extratos Vegetais/isolamento & purificação , Ácido Chiquímico/análogos & derivados , Solanum/química , Cromatografia/instrumentação , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Ácido Chiquímico/química , Ácido Chiquímico/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa