RESUMO
BACKGROUND: In a phase III trial, the RTS,S/AS01 malaria vaccine produced lower anti-circumsporozoite (CS) antibody titers when co-administered with Expanded Programme on Immunization vaccines (0-, 1- and 2-month schedule) at 6 to 12 weeks compared with 5 to 17 months at first vaccination. Alternative infant immunization schedules within the Expanded Programme on Immunization were investigated. METHODS: This phase II, open, single-site (Blantyre, Malawi) trial was conducted in infants 1 to 7 days of age. Subjects were equally randomized across 7 groups to receive 3 doses of RTS,S/AS01E at time points that included ≤7 days, 6, 10, 14 and 26 weeks, and 9 months. All RTS,S/AS01E groups plus a control group (without RTS,S/AS01E) received Bacillus Calmette-Guérin + oral poliovirus vaccine at ≤7 days, diphtheria, tetanus, whole-cell pertussis, hepatitis B and Haemophilus influenzae type b vaccine + oral poliovirus vaccine at 6, 10, and 14 weeks and measles vaccine at 9 months; one RTS,S/AS01E group and the control additionally received hepatitis B vaccination at ≤7 days. Serum anti-CS antibody geometric mean concentration (GMC; enzyme-linked immunosorbent assay) and safety were assessed up to age 18 months. RESULTS: Of the 480 infants enrolled, 391 completed the study. No causally related serious adverse event was reported. A higher frequency of fever within 7 days of RTS,S/AS01E vaccination compared with control was observed. Compared with the standard 6-, 10-, 14-week schedule, anti-CS antibody GMC ratios post-dose 3 were significantly higher in the 10-, 14- and 26-week group only (ratio 1.80; 95% confidence interval, 1.24-2.60); RTS,S/AS01E vaccination at ≤7 days and 10 and 14 weeks produced significantly lower anti-CS GMCs (ratio 0.59; 95% confidence interval, 0.38-0.92). CONCLUSIONS: Initiation of RTS,S/AS01E vaccination above 6 weeks of age tended to improve anti-CS antibody responses. Neonatal vaccination was well tolerated but produced a comparatively lower immune response.
Assuntos
Esquemas de Imunização , Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários/sangue , Feminino , Febre/etiologia , Humanos , Programas de Imunização , Recém-Nascido , Vacinas Antimaláricas/administração & dosagem , Malaui , Masculino , Plasmodium falciparum/imunologia , Vacinação/efeitos adversosRESUMO
Rotavirus gastroenteritis is a major cause of morbidity and mortality among African infants and young children. A phase III, placebo-controlled, multi-centre clinical trial of a live, oral G1P[8] human rotavirus vaccine (RIX4414) undertaken in Malawi and South Africa significantly reduced the incidence of severe rotavirus gastroenteritis in the first year of life. We now report on vaccine efficacy in the Malawi cohort of children who were followed into the second year of life. A total of 1773 healthy infants were enrolled in Blantyre, Malawi into three groups. Two groups received three doses of RIX4414 or placebo at age 6, 10, and 14 weeks and the third group received placebo at 6 weeks and RIX4414 at age 10 and 14 weeks. Subjects were followed by weekly home visits for episodes of gastroenteritis until 1 year of age, and were then re-consented for further follow-up to 18-24 months of age. Severity of gastroenteritis episodes was graded according to the Vesikari scoring system. Seroconversion for anti-rotavirus IgA was determined on a subset of children by using ELISA on pre- and post-vaccine blood samples. Rotavirus VP7 (G) and VP4 (P) genotypes were determined by RT-PCR. A total of 70/1030 (6.8%, 95% CI 5.3-8.5) subjects in the pooled (2 dose plus 3 dose) RIX4414 group compared with 53/483 (11.0%, 8.3-14.1) subjects in the placebo group developed severe rotavirus gastroenteritis in the entire follow-up period (vaccine efficacy 38.1% (9.8-57.3)). The point estimate of efficacy in the second year of life (17.6%; -59.2 to 56.0) was lower than in the first year of life (49.4%; 19.2-68.3). There were non-significant trends towards a higher efficacy in the second year of life among children who received the three-dose schedule compared with the two-dose schedule, and a higher anti-rotavirus IgA seroresponse rate in the three-dose RIX4414 group. Rotavirus strains detected included genotype G12 (31%); G9 (23%); and G8 (18%); only 18% of strains belonged to the G1P[8] genotype. While the optimal dosing schedule of RIX4414 in African infants requires further investigation, vaccination with RIX4414 significantly reduced the incidence of severe gastroenteritis caused by diverse rotavirus strains in an impoverished African population with high rotavirus disease burden in the first two years of life.