Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 59(12): 8308-8319, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32437613

RESUMO

Despite a comprehensive study on the biosynthesis and function of nitric oxide, biological metabolism of nitric oxide, especially when its concentration exceeds the cytotoxic level, remains elusive. Oxidation of nitric oxide by O2 in aqueous solution has been known to yield NO2-. On the other hand, a biomimetic study on the metal-mediated conversion of NO to NO2-/NO3- via O2 reactivity disclosed a conceivable pathway for aerobic metabolism of NO. During the NO-to-NO3- conversion, transient formation of metal-bound peroxynitrite and subsequent release of •NO2 via O-O bond cleavage were evidenced by nitration of tyrosine residue or 2,4-di-tert-butylphenol (DTBP). However, the synthetic/catalytic/enzymatic cycle for conversion of nitric oxide into a nitrite pool is not reported. In this study, sequential reaction of the ferrous complex [(PMDTA)Fe(κ2-O,O'-NO2)(κ1-O-NO2)] (3; PMDTA = pentamethyldiethylenetriamine) with NO(g), KC8, and O2 established a synthetic cycle, complex 3 → {Fe(NO)2}9 DNIC [(PMDTA)Fe(NO)2][NO2] (4) → {Fe(NO)2}10 DNIC [(PMDTA)Fe(NO)2] (1) → [(PMDTA)(NO)Fe(κ2-O,N-ONOO)] (2) → complex 3, for the transformation of nitric oxide into nitrite. In contrast to the reported reactivity of metal-bound peroxynitrite toward nitration of DTBP, peroxynitrite-bound MNIC 2 lacks phenol nitration reactivity toward DTBP. Presumably, the [(PMDTA)Fe] core in {Fe(NO)}8 MNIC 2 provides a mononuclear template for intramolecular interaction between Fe-bound peroxynitrite and Fe-bound NO-, yielding Fe-bound nitrite stabilized in the form of complex 3. This [(PMDTA)Fe]-core-mediated concerted peroxynitrite homolytic O-O bond cleavage and combination of the O atom with Fe-bound NO- reveals a novel and effective pathway for NO-to-NO2- transformation. Regarding the reported assembly of the dinitrosyliron unit (DNIU) [Fe(NO)2] in the biological system, this synthetic cycle highlights DNIU as a potential intermediate for nitric oxide monooxygenation activity in a nonheme iron system.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxido Nítrico/química , Nitritos/química , Poliaminas/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Oxigênio/química
2.
Inorg Chem ; 58(15): 9586-9591, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31294544

RESUMO

Flavodiiron nitric oxide reductases (FNORs) evolved in some pathogens are known to detoxify NO via two-electron reduction to N2O to mitigate nitrosative stress. In this study, we describe how the electronically localized {Fe(NO)2}10-{Fe(NO)2}9 dinuclear dinitrosyl iron complex (dinuclear DNIC) [(NO)2Fe(µ-bdmap)Fe(NO)2(THF)] (2) (bdmap = 1,3-bis(dimethylamino)-2-propanolate) can induce a reductive coupling of NO to form hyponitrite-coordinated tetranuclear DNIC, which then converts to N2O. Upon the addition of 1 equiv of NO into the dinuclear {Fe(NO)2}10-{Fe(NO)2}9 DNIC 2, the proposed side-on-bound [NO]--bridged [(NO)2Fe(µ-bdmap)(κ2-NO) Fe(NO)2] intermediate may facilitate intermolecular (O)N-N(O) bond coupling to yield the paramagnetic tetranuclear quadridentate trans-hyponitrite-bound {[(NO)2Fe(µ-bdmap)Fe(NO)2]2(κ4-N2O2)} that transforms to [Fe(NO)2(µ-bdmap)]2, along with the release of N2O upon Hbdmap (1,3-bis(dimethylamino)-2-propanol) added.

3.
Angew Chem Int Ed Engl ; 54(49): 14824-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26440930

RESUMO

Despite extensive efforts, the electrocatalytic reduction of water using homogeneous/heterogeneous Fe, Co, Ni, Cu, W, and Mo complexes remains challenging because of issues involving the development of efficient, recyclable, stable, and aqueous-compatible catalysts. In this study, evolution of the de novo designed dinitrosyl iron complex DNIC-PMDTA from a molecular catalyst into a solid-state hydrogen evolution cathode, considering all the parameters to fulfill the electronic and structural requirements of each step of the catalytic cycle, is demonstrated. DNIC-PMDTA reveals electrocatalytic reduction of water at neutral and basic media, whereas its deposit on electrode preserves exceptional longevity, 139 h. This discovery will initiate a systematic study on the assembly of [Fe(NO)2] motif into current collector for mass production of H2, whereas the efficiency remains tailored by its molecular precursor [(L)Fe(NO)2].

4.
Inorg Chem ; 52(8): 4151-3, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23541028

RESUMO

Insertion of CS2 into the thermally unstable nickel(III) hydride [PPN][Ni(H)(P(o-C6H3-3-SiMe3-2-S)3)] (1), freshly prepared from the reaction of [PPN][Ni(OC6H5)P(C6H3-3-SiMe3-2-S)3] and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin; pin = OCMe2CMe2O) in tetrahydrofuran at -80 °C via a metathesis reaction, readily affords [PPN][Ni(III)(κ(1)-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)] (2) featuring a κ(1)-S2CH moiety.


Assuntos
Dissulfeto de Carbono/química , Complexos de Coordenação/química , Cupriavidus necator/enzimologia , Hidrogenase/química , Níquel/química , Domínio Catalítico , Cupriavidus necator/química , Elétrons , Modelos Moleculares
5.
Inorg Chem ; 51(19): 10092-4, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22963148

RESUMO

Nitrosylation of the chelate-thiolate-containing dinitrosyliron complex (DNIC) [(S(CH(2))(3)S)Fe(NO)(2)](-) triggers nitric oxide (NO) activation to generate the homoleptic nitrosyl {Fe(NO)(2)}(9) DNIC [Fe(NO)(4)](-) (1) made up of two nitroxyls (or two NO anions) attached to a delocalized {Fe(NO)(2)}(9) motif. The significantly longer N3-O3/N4-O4 [1.380(12) and 1.280(12) Å] and Fe1-N3/Fe1-N4 [2.008(11) and 2.045(10) Ǻ] bond distances reflect that N3-O3 and N4-O4 of complex 1 may act as the nitroxyl-coordinated ligands. That is, the electronic structure of the DNIC 1 is best described as a {Fe(NO)(2)}(9) motif coordinated by two nitroxyl (NO(-)) ligands.


Assuntos
Complexos de Coordenação/química , Compostos de Ferro/química , Óxido Nítrico/química , Compostos Nitrosos/química , Ânions/química , Ligantes , Modelos Moleculares , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química
6.
Chem Commun (Camb) ; 58(16): 2746-2749, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35119447

RESUMO

We report an electrocatalyst, Co bases (metallic Co and Co(OH)2) with fluoride-incorporated CoO coating on the surface of (CoO-F/Co), was synthesized by the electro-deposition method. The porous network architecture of CoO-F/Co on the glassy carbon electrode exhibited an ultra-low overpotential of 15 mV, achieving the geometric current density of 10 mA cm-2 in 1.0 M KOH, which were comparable with the HER performance of numerous reported noble metal electrocatalysts. It is demonstrated that fluoride incorporation improved the electrodeposition particle size, electronic density, conductivity and hydrophilicity of CoO-F/Co the HER performance.

7.
Inorg Chem ; 47(17): 7908-13, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18672877

RESUMO

The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.


Assuntos
Álcoois/química , Hidrogenase/química , Níquel/química , Compostos Organometálicos/síntese química , Oxigênio/química , Domínio Catalítico , Eletroquímica , Hidrogenase/metabolismo , Ligantes , Compostos Organometálicos/química , Oxirredução , Espectrofotometria Ultravioleta
8.
Dalton Trans ; 47(21): 7128-7134, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29756619

RESUMO

In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

9.
Chem Sci ; 7(6): 3640-3644, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008996

RESUMO

Carbon dioxide is expected to be employed as an inexpensive and potential feedstock of C1 sources for the mass production of valuable chemicals and fuel. Versatile chemical transformations of CO2, i.e. insertion of CO2 producing bicarbonate/acetate/formate, cleavage of CO2 yielding µ-CO/µ-oxo transition-metal complexes, and electrocatalytic reduction of CO2 affording CO/HCOOH/CH3OH/CH4/C2H4/oxalate were well documented. Herein, we report a novel pathway for the reductive activation of CO2 by the [NiIII(OMe)(P(C6H3-3-SiMe3-2-S)3)]- complex, yielding the [NiIII(κ1-OCO˙-)(P(C6H3-3-SiMe3-2-S)3)]- complex. The formation of this unusual NiIII(κ1-OCO˙-) complex was characterized by single-crystal X-ray diffraction, EPR, IR, SQUID, Ni/S K-edge X-ray absorption spectroscopy, and Ni valence-to-core X-ray emission spectroscopy. The inertness of the analogous complexes [NiIII(SPh)], [NiII(CO)], and [NiII(N2H4)] toward CO2, in contrast, demonstrates that the ionic [NiIII(OMe)] core attracts the binding of weak σ-donor CO2 and triggers the subsequent reduction of CO2 by the nucleophilic [OMe]- in the immediate vicinity. This metal-ligand cooperative activation of CO2 may open a novel pathway promoting the subsequent incorporation of CO2 in the buildup of functionalized products.

10.
Inorg Chem ; 46(21): 8913-23, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17867675

RESUMO

Compared to [Ni(II)(SePh)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (1a) and [Ni(II)(Cl)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (3a) with a combination of the intramolecular [Ni...H-S] and [Ni-S...H-S] interactions, complexes [NiII(SePh)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (1b) and [Ni(II)(Cl)(P (o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (3b) with intramolecular [Ni...H-S] interaction exhibit lower nu(S-H) stretching frequencies (2137 and 2235 cm(-1) for 1b and 3b vs 2250 and 2287 cm(-1) for 1a and 3a, respectively) and smaller torsion angles (27.2 degrees for 3b vs 58.9 and 59.1 degrees for 1a and 3a, respectively). The pendant thiol interaction modes of 1a, 3a, and 3b in the solid state are controlled by the solvent pairs of crystallization. Oxygen oxidation of dinuclear [Ni(II)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))](2) (4) yielded thermally stable dinuclear [Ni(III)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-mu-S))](2) (5). The two paramagnetic d(7) Ni(III) cores (S = 1/2) with antiferromagnetic coupling (J = -3.13 cm(-1)) rationalize the diamagnetic property of 5. The fully delocalized mixed-valence [Ni(II)-Ni(III)] complexes [Ni2(P(o-C(6)H(3)-3-SiMe(3)-2-S)(3))(2)]- (6) and [Ni(2)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(3))(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SCH(3)))] (7) were isolated upon the reduction of 5 and the methylation of 6, respectively. The electronic perturbation from the sulfur methylation of 6 triggers the stronger Ni...Ni interaction and the geometrical rearrangement from the diamond shape of the [NiS(2)Ni] core to the butterfly structure of [Ni(mu-S)(2)Ni] to yield 7 with Ni...Ni distances of 2.6088(1) A. The distinctly different Ni...Ni distances (2.6026(7) for 5 and 2.8289(15) A for 6) and the coordination number of the nickels indicate a balance of geometrical requirements for different oxidation levels of [PS(3)Ni-NiPS(3)] cores of 5 and 6.


Assuntos
Níquel/química , Oxigênio/química , Compostos de Sulfidrila/química , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Eletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Metilação , Modelos Químicos , Modelos Teóricos , Conformação Molecular , Solventes/química , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa