Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772806

RESUMO

Double-stranded RNA (dsRNA), a hallmark viral material that activates antiviral interferon (IFN) responses, can appear in human cells also in the absence of viruses. We identify phosphorothioate DNAs (PS DNAs) as triggers of such endogenous dsRNA (endo-dsRNA). PS DNAs inhibit decay of nuclear RNAs and induce endo-dsRNA via accumulation of high levels of intronic and intergenic inverted retroelements (IIIR). IIIRs activate endo-dsRNA responses distinct from antiviral defense programs. IIIRs do not turn on transcriptional RIG-I/MDA5/IFN signaling, but they trigger the dsRNA-sensing pathways of OAS3/RNase L and PKR. Thus, nuclear RNA decay and nuclear-cytosolic RNA sorting actively protect from these innate immune responses to self. Our data suggest that the OAS3/RNase L and PKR arms of innate immunity diverge from antiviral IFN responses and monitor nuclear RNA decay by sensing cytosolic escape of IIIRs. OAS3 provides a receptor for IIIRs, whereas RNase L cleaves IIIR-carrying introns and intergenic RNAs.


Assuntos
Proteína DEAD-box 58/genética , Interferons/genética , Íntrons/genética , RNA de Cadeia Dupla/genética , Receptores Imunológicos/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , RNA Viral/genética , Transdução de Sinais/genética
2.
Infect Immun ; 90(4): e0007322, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377172

RESUMO

Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Humanos , Imunidade Inata , Inflamação/metabolismo , Linfócitos
3.
J Immunol ; 205(4): 1009-1023, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690659

RESUMO

Von Hippel-Lindau (VHL) is an E3 ubiquitin ligase that targets proteins, including HIF-1α, for proteasomal degradation. VHL and HIF regulate the balance between glycolysis and oxidative phosphorylation, which is critical in highly dynamic T cells. HIF-1α positively regulates Th17 differentiation, a complex process in which quiescent naive CD4 T cells undergo transcriptional changes to effector cells, which are commonly dysregulated in autoimmune diseases. The role of VHL in Th17 cells is not known. In this study, we hypothesized VHL negatively regulates Th17 differentiation and deletion of VHL in CD4 T cells would elevate HIF-1α and increase Th17 differentiation. Unexpectedly, we found that VHL promotes Th17 differentiation. Mice deficient in VHL in their T cells were resistant to an autoimmune disease, experimental autoimmune encephalomyelitis, often mediated by Th17 cells. In vitro Th17 differentiation was impaired in VHL-deficient T cells. In the absence of VHL, Th17 cells had decreased activation of STAT3 and SMAD2, suggesting that VHL indirectly or directly regulates these critical signaling molecules. Gene expression analysis revealed that in Th17 cells, VHL regulates many cellular pathways, including genes encoding proteins involved indirectly or directly in the glycolysis pathway. Compared with wild-type, VHL-deficient Th17 cells had elevated glycolysis and glycolytic capacity. Our finding has implications on the design of therapeutics targeting the distinct metabolic needs of T cells to combat chronic inflammatory diseases.


Assuntos
Diferenciação Celular/fisiologia , Células Th17/metabolismo , Células Th17/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Feminino , Expressão Gênica/fisiologia , Glicólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(6): 2103-2111, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655338

RESUMO

Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2',5'-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-ß and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.


Assuntos
Técnicas Biossensoriais , Endorribonucleases/química , Interferon beta/química , Interferons/química , Biossíntese de Proteínas , Linhagem Celular , Endorribonucleases/metabolismo , Humanos , Interferon beta/metabolismo , Interferons/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
5.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999018

RESUMO

The contribution of T cell and antibody responses following vaccination in resistance to herpes simplex virus 1 (HSV-1) infection continues to be rigorously investigated. In the present article, we explore the contribution of CD8+ T cells specific for the major antigenic epitope for HSV-1 glycoprotein B (gB498-505, gB) in C57BL/6 mice using a transgenic mouse (gBT-I.1) model vaccinated with HSV-1 0ΔNLS. gBT-I.1-vaccinated mice did not generate a robust neutralization antibody titer in comparison to the HSV-1 0ΔNLS-vaccinated wild-type C57BL/6 counterpart. Nevertheless, the vaccinated gBT-I.1 mice were resistant to ocular challenge with HSV-1 compared to vehicle-vaccinated animals based on survival and reduced corneal neovascularization but displayed similar levels of corneal opacity. Whereas there was no difference in the virus titer recovered from the cornea comparing vaccinated mice, HSV-1 0ΔNLS-vaccinated animals possessed significantly less infectious virus during acute infection in the trigeminal ganglia (TG) and brain stem compared to the control-vaccinated group. These results correlated with a significant increase in gB-elicited interferon-γ (IFN-γ), granzyme B, and CD107a and a reduction in lymphocyte activation gene 3 (LAG-3), programmed cell death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expressed by TG infiltrating gB-specific CD8+ T cells from the HSV-1 0ΔNLS-vaccinated group. Antibody depletion of CD8+ T cells in HSV-1 0ΔNLS-vaccinated mice rendered animals highly susceptible to virus-mediated mortality similar to control-vaccinated mice. Collectively, the HSV-1 0ΔNLS vaccine is effective against ocular HSV-1 challenge, reducing ocular neovascularization and suppressing peripheral nerve virus replication in the near absence of neutralizing antibody in this unique mouse model.IMPORTANCE The role of CD8+ T cells in antiviral efficacy using a live-attenuated virus as the vaccine is complicated by the humoral immune response. In the case of the herpes simplex virus 1 (HSV-1) 0ΔNLS vaccine, the correlate of protection has been defined to be primarily antibody driven. The current study shows that in the near absence of anti-HSV-1 antibody, vaccinated mice are protected from subsequent challenge with wild-type HSV-1 as measured by survival. The efficacy is lost following depletion of CD8+ T cells. Whereas increased survival and reduction in virus replication were observed in vaccinated mice challenged with HSV-1, cornea pathology was mixed with a reduction in neovascularization but no change in opacity. Collectively, the study suggests CD8+ T cells significantly contribute to the host adaptive immune response to HSV-1 challenge following vaccination with an attenuated virus, but multiple factors are involved in cornea pathology in response to ocular virus challenge.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos/imunologia , Córnea , Feminino , Herpes Simples/imunologia , Imunização/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/virologia , Vacinação , Proteínas do Envelope Viral/imunologia
6.
Proc Natl Acad Sci U S A ; 112(52): 15916-21, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668391

RESUMO

Double-stranded RNA (dsRNA) activates the innate immune system of mammalian cells and triggers intracellular RNA decay by the pseudokinase and endoribonuclease RNase L. RNase L protects from pathogens and regulates cell growth and differentiation by destabilizing largely unknown mammalian RNA targets. We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and nontargets. We show that this RNase L-dependent decay selectively affects transcripts regulated by microRNA (miR)-17/miR-29/miR-200 and other miRs that function as suppressors of mammalian cell adhesion and proliferation. RNase L mimics the effects of these miRs and acts as a suppressor of proliferation and adhesion in mammalian cells. Our data suggest that RNase L-dependent decay serves to establish an antiproliferative state via destabilization of the miR-regulated transcriptome.


Assuntos
Endorribonucleases/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Transcriptoma , Animais , Western Blotting , Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Endorribonucleases/metabolismo , Células HeLa , Humanos , Camundongos Knockout , MicroRNAs/metabolismo , Mutação , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Neuroimmunol ; 388: 578294, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306927

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) can cause HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Current treatment options for HAM/TSP are limited. We present a woman with rapidly-progressive HAM/TSP with significant, sustained clinical improvement following initiation of mycophenolate mofetil (MMA). Peripheral blood mononuclear cells from the patient, her asymptomatic carrier husband and eight healthy controls were isolated. Frequencies of T-cell populations upon exposure to low and high MMA concentrations and differences in proliferation were analyzed using flow cytometry and a CSFE-proliferation assay. Characterization of T-cell function and proliferation showed higher levels of GranzymeB in HTLV-1+ donors. The improvement and stability of symptoms in this patient with HAM/TSP following MMA initiation requires further study as a potential treatment for HAM/TSP.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Humanos , Feminino , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Ácido Micofenólico/uso terapêutico , Leucócitos Mononucleares , Paraparesia Espástica Tropical/tratamento farmacológico , Paraparesia Espástica Tropical/diagnóstico
8.
J Thromb Haemost ; 22(4): 1154-1166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072374

RESUMO

BACKGROUND: Platelet (PLT) product transfusion is a life-saving therapy for actively bleeding patients. There is an urgent need to maintain PLT function and extend shelf life to improve outcomes in these patients. Cold-stored PLT (CS-PLT) maintain hemostatic potential better than room temperature-stored PLT (RT-PLT). However, whether function in long-term CS-PLT is maintained under physiological flow regimes and/or determined by cold-induced metabolic changes is unknown. OBJECTIVES: This study aimed to (i) compare the function of RT-PLT and CS-PLT under physiological flow conditions, (ii) determine whether CS-PLT maintain function after 3 weeks of storage, and (iii) identify metabolic pathways associated with the CS-PLT lesion. METHODS: We performed phenotypic and functional assessments of RT- and CS-PLT (22 °C and 4 °C storage, respectively; N = 10 unique donors) at storage days 0, 5, and/or 21 via metabolomics, flow cytometry, aggregation, thrombin generation, viscoelastic testing, and a microfluidic assay to measure primary hemostatic function. RESULTS: Day 21 4 °C PLT formed an occlusive thrombus under arterial shear at a similar rate to day 5 22 °C PLT. Day 21 4 °C PLTs had enhanced thrombin generation capacity compared with day 0 PLT and maintained functionality comparable to day RT-PLT across all assays performed. Key metrics from microfluidic assessment, flow cytometry, thrombin generation, and aggregation were associated with 4 °C storage, and metabolites involved in taurine and purine metabolism significantly correlated with these metrics. Taurine supplementation of PLT during storage improved hemostatic function under flow. CONCLUSION: CS-PLT stored for 3 weeks maintain hemostatic activity, and storage-induced phenotype and function are associated with taurine and purine metabolism.


Assuntos
Hemostáticos , Humanos , Trombina/metabolismo , Preservação de Sangue , Plaquetas/metabolismo , Purinas/metabolismo
9.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798291

RESUMO

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.

10.
Front Immunol ; 14: 1219250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744358

RESUMO

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Ativação Viral , Latência Viral , Alendronato/uso terapêutico , Alendronato/farmacologia
11.
Cell Stem Cell ; 29(7): 1009-1010, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803220

RESUMO

In this issue of Cell Stem Cell, Xu et al. and Yu et al. use low-input epigenetic profiling techniques to map H3K9me3 deposition in early human development. They reveal stage-specific H3K9me3 deposition on retrotransposons, which may play crucial cis-regulatory roles in early development.


Assuntos
Epigênese Genética , Histonas , Histonas/metabolismo , Humanos
12.
Pathogens ; 11(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35745465

RESUMO

The use of antiretroviral therapy (ART) for Human Immunodeficiency Virus (HIV) treatment has been highly successful in controlling plasma viremia to undetectable levels. However, a complete cure for HIV is hindered by the presence of replication-competent HIV, integrated in the host genome, that can persist long term in a resting state called viral latency. Resting memory CD4+ T cells are considered the biggest reservoir of persistent HIV infection and are often studied exclusively as the main target for an HIV cure. However, other cell types, such as circulating monocytes and tissue-resident macrophages, can harbor integrated, replication-competent HIV. To develop a cure for HIV, focus is needed not only on the T cell compartment, but also on these myeloid reservoirs of persistent HIV infection. In this review, we summarize their importance when designing HIV cure strategies and challenges associated to their identification and specific targeting by the "shock and kill" approach.

13.
Front Immunol ; 13: 819574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032159

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.


Assuntos
COVID-19 , Imunidade Inata , Subpopulações de Linfócitos T , Antivirais , COVID-19/imunologia , Citocinas , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , SARS-CoV-2 , Subpopulações de Linfócitos T/imunologia
14.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36429001

RESUMO

Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Ativação Linfocitária , Linfócitos T , Antígenos , Neoplasias/terapia , Imunoterapia
15.
J Pharmacol Exp Ther ; 338(2): 518-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21586603

RESUMO

Mice expressing the human Cu(2+)/Zn(2+) superoxide dismutase 1 (hSOD1) gene mutation (hSOD1(G93A); G93A) were exposed to methylmercury (MeHg) at concentrations that did not cause overt motor dysfunction. We hypothesized that low concentrations of MeHg could hasten development of the amyotrophic lateral sclerosis (ALS)-like phenotype in G93A mice. MeHg (1 or 3 ppm/day in drinking water) concentration-dependently accelerated the onset of rotarod failure in G93A, but not wild-type, mice. At the time of rotarod failure, MeHg increased Fluo-4 fluorescence (free intracellular calcium concentration [Ca(2+)](i)) in soma of brainstem-hypoglossal nucleus. These motor neurons control intrinsic and some extrinsic tongue function and exhibit vulnerability in bulbar-onset ALS. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione reduced [Ca(2+)](i) in all G93A mice, irrespective of MeHg treatment. N-acetyl spermine, which antagonizes Ca(2+)-permeable AMPA receptors, further reduced [Ca(2+)](i) more effectively in MeHg-treated than untreated G93A mice, suggesting that MeHg-treated mice have a greater Ca(2+)-permeable AMPA receptor contribution. The non-Ca(2+) divalent cation chelator N,N,N',N'-tetrakis(pyridylmethyl)ethylenediamine reduced Fluo-4 fluorescence in all G93A mice; FluoZin-(Zn(2+) indicator) fluorescence was increased in all MeHg-treated mice. Thus in G93A mice Zn(2+) apparently contributed measurably to the MeHg-induced effect. This is the initial demonstration of accelerated onset of ALS-like phenotype in a genetically susceptible organism by exposure to low concentrations of an environmental neurotoxicant. Increased [Ca(2+)](i) induced by the G93A-MeHg interaction apparently was associated with Ca(2+)-permeable AMPA receptors and may contribute to the hastened development of ALS-like phenotypes by subjecting motor neurons to excessive elevation of [Ca(2+)](i), leading to excitotoxic cell death.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Ácido Glutâmico/toxicidade , Compostos de Metilmercúrio/toxicidade , Fenótipo , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/induzido quimicamente , Animais , Agonistas de Aminoácidos Excitatórios/toxicidade , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/biossíntese
16.
Nat Commun ; 10(1): 2367, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147539

RESUMO

Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spectrometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Šcrystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2'-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mitochondria and propose that NADP(H) regulation, which takes place at least in part in mitochondria, establishes the molecular link between circadian clock and metabolism.

17.
Immunohorizons ; 2(1): 1-11, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354801

RESUMO

It is well accepted that the innate response is a necessary prerequisite to the formation of the adaptive response. This is true for T cell responses against infections or adjuvanted subunit vaccination. However, specific innate parameters with predictive value for the magnitude of an adjuvant-elicited T cell response have yet to be identified. We previously reported how T cell responses induced by subunit vaccination were dependent on the cytokine IL-27. These findings were unexpected, given that T cell responses to an infection typically increase in the absence of IL-27. Using a novel IL-27p28-eGFP reporter mouse, we now show that the degree to which an adjuvant induces IL-27p28 production from dendritic cells and monocytes directly predicts the magnitude of the T cell response elicited. To our knowledge, these data are the first to identify a concrete innate correlate of vaccine-elicited cellular immunity, and they have significant practical and mechanistic implications for subunit vaccine biology.

18.
Sci Immunol ; 3(27)2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194241

RESUMO

In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection. Because IRF4 facilitates metabolic support of proliferating cells via aerobic glycolysis, we expected this form of metabolic activity to be reduced in the absence of IL-27 or IL-15 signaling after vaccination. Instead, metabolic flux analysis indicated that vaccine-elicited T cells used only mitochondrial function to support their clonal expansion. Loss of IL-27 or IL-15 signaling during vaccination resulted in a reduction in mitochondrial function, with no corresponding increase in aerobic glycolysis. Consistent with these observations, the T cell response to vaccination was unaffected by in vivo treatment with the glycolytic inhibitor 2-deoxyglucose, whereas the response to viral challenge was markedly lowered. Collectively, our data identify IL-27 and IL-15 as critical to vaccine-elicited T cell responses because of their capacity to fuel clonal expansion through a mitochondrial metabolic program previously thought only capable of supporting quiescent naïve and memory T cells.


Assuntos
Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Aerobiose , Alérgenos/imunologia , Animais , Feminino , Glicólise , Interleucina-15/imunologia , Interleucinas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Ovalbumina/imunologia , Vacínia/imunologia
19.
Science ; 343(6176): 1244-8, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24578532

RESUMO

One of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.1 angstrom crystal structures of human RNase L in complexes with synthetic and natural ligands and a fragment of an RNA substrate. RNase L forms a crossed homodimer stabilized by ankyrin (ANK) and kinase homology (KH) domains, which positions two kinase extension nuclease (KEN) domains for asymmetric RNA recognition. One KEN protomer recognizes an identity nucleotide (U), whereas the other protomer cleaves RNA between nucleotides +1 and +2. The coordinated action of the ANK, KH, and KEN domains thereby provides regulated, sequence-specific cleavage of viral and host RNA targets by RNase L.


Assuntos
Endorribonucleases/química , Interferon Tipo I/fisiologia , Clivagem do RNA , Estabilidade de RNA , Cristalografia por Raios X , Endorribonucleases/metabolismo , Células HeLa , Vírus da Hepatite B/genética , Humanos , Interferon Tipo I/farmacologia , Multimerização Proteica , Estrutura Terciária de Proteína , RNA Viral/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa