Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Biophys J ; 122(1): 168-179, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36352784

RESUMO

The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.


Assuntos
Escherichia coli , Lipossomos , Prótons , Rodopsinas Microbianas/química , Lipídeos
2.
J Am Chem Soc ; 145(33): 18215-18220, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552830

RESUMO

The distributions of heteroatoms within zeolite frameworks have important influences on the locations of exchangeable cations, which account for the diverse adsorption and reaction properties of zeolite catalysts. In particular for aluminosilicate zeolites, paired configurations of aluminum atoms separated by one or two tetrahedrally coordinated silicon atoms are important for charge-balancing pairs of H+ cations, which are active for methanol dehydration, or divalent metal cations, such as Cu2+, which selectively catalyze the reduction of NOx, both technologically important reactions. Such paired heteroatom configurations, however, are challenging to detect and probe, due to the typically nonstoichiometric compositions and nonperiodic distributions of aluminum atoms within aluminosilicate zeolite frameworks. Nevertheless, distinct configurations of paired framework aluminum atoms are unambiguously detected and resolved in solid-state 2D 27Al-29Si and 29Si-29Si NMR spectra, which are sensitive to the local environments of covalently bonded 27Al-O-29Si and 29Si-O-29Si moieties, respectively. Specifically, two H+-chabazite zeolites with the same bulk framework aluminum contents are shown to have different types and populations of closely paired aluminum species, which correlate with higher activity for methanol dehydration. The methodologies and insights are expected to be broadly applicable to analyses of heteroatom sites, their distributions, and adsorption and reaction properties in other zeolite framework types.

3.
Phys Chem Chem Phys ; 23(2): 1006-1020, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404028

RESUMO

By analogy to heat and mass transfer film theory, a general approach is introduced for determining hyperpolarization transfer rates between dilute electron spins and a surrounding nuclear ensemble. These analyses provide new quantitative relationships for understanding, predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic regimes associated with different rate-limiting polarization transfer phenomena. Dimensional property relationships are derived and used to evaluate the competitive rates of spin polarization generation, propagation, and dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The quantitative analyses agree closely with experimental measurements for the accumulation, propagation, and dissipation of hyperpolarization in solids and provide evidence for kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical approach yield general design criteria for analyzing and optimizing polarization transfer processes involving complex interfaces and composite media for applications in materials science, physical chemistry and nuclear spintronics.

4.
J Am Chem Soc ; 141(13): 5078-5082, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793597

RESUMO

High-performance organic semiconducting materials are reliant upon subtle changes in structure across different length scales. These morphological features control relevant physical properties and ultimately device performance. By combining in situ NMR spectroscopy and theoretical calculations, the conjugated small molecule TT is shown to exhibit distinct temperature-dependent local structural features that are related to macroscopic properties. Specifically, lamellar and melt states are shown to exhibit different molecular topologies associated with planar and twisted conformations of TT, respectively. This topological transformation offers a novel avenue for molecular design and control of solid-state organization.


Assuntos
Compostos Orgânicos/química , Bibliotecas de Moléculas Pequenas/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Semicondutores , Temperatura
5.
J Am Chem Soc ; 141(51): 20155-20165, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31751124

RESUMO

Organic structure-directing agents (OSDAs) are exploited in the crystallization of microporous materials to tailor the physicochemical properties of the resulting zeolite for applications ranging from separations to catalysis. The rational design of these OSDAs often entails the identification of molecules with a geometry that is commensurate with the channels and cages of the target zeolite structure. Syntheses tend to employ only a single OSDA, but there are a few examples where two or more organics operate synergistically to yield a desired product. Using a combination of state-of-the-art characterization techniques and molecular modeling, we show that the coupling of N,N,N-trimethyl-1,1-adamantammonium and 1,2-hexanediol, each yielding distinct zeolites when used alone, results in the cooperative direction of a third structure, HOU-4, with the mordenite framework type (MOR). Rietveld refinement using synchrotron X-ray diffraction data reveals the spatial arrangement of the organics in the HOU-4 crystals, with amines located in the large channels and alcohols oriented in the side pockets lining the one-dimensional pores. These results are in excellent agreement with molecular dynamics calculations, which predict similar spatial distributions of organics with an energetically favorable packing density that agrees with experimental measurements of OSDA loading, as well as with solid-state two-dimensional 27Al{29Si}, 27Al{1H}, and 13C{1H} NMR correlation spectra, which establish the proximities and interactions of occluded OSDAs. A combination of high-resolution transmission electron microscopy and atomic force microscopy is used to quantify the size of the HOU-4 crystals, which exhibit a platelike morphology, and to index the crystal facets. Our findings reveal that the combined OSDAs work in tandem to produce ultrathin, nonfaulted HOU-4 crystals that exhibit improved catalytic activity for cumene cracking in comparison to mordenite crystals prepared via conventional syntheses. This novel demonstration of cooperativity highlights the potential possibilities for expanding the use of dual structure-directing agents in zeolite synthesis.

7.
Nat Mater ; 17(4): 341-348, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507417

RESUMO

There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

8.
Langmuir ; 35(48): 15661-15673, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479272

RESUMO

Boron adsorption properties of poly(styrene-co-divinylbenzene) (PSDVB)-based anion-exchange resins with surface-grafted N-methyl-d-glucamine (NMDG) depend strongly on their local surface compositions, structures, and interfacial interactions. Distinct boron adsorption sites have been identified and quantified, and interactions between borate anions and hydroxyl groups of NMDG surface moieties have been established. A combination of X-ray photoelectron spectroscopy (XPS), solid-state nuclear magnetic resonance (NMR), and Fourier-transform infrared (FT-IR) spectroscopy were used to characterize the atomic-level compositions and structures that directly influence the adsorption of borate anions on the NMDG-functionalized resin surface. Surface-enhanced dynamic-nuclear-polarization (DNP)-NMR enabled dilute (3 atom % N) tertiary alkyl amines and quaternary ammonium ions of the NMDG groups to be detected and distinguished with unprecedented sensitivity and resolution at natural abundance 15N (0.4%). Two-dimensional (2D) solid-state 11B{1H}, 13C{1H}, and 11B{11B} NMR analyses provide direct atomic-scale evidence for interactions of borate anions with the NMDG moieties on the resin surfaces, which form stable mono- and bischelate complexes. FT-IR spectra reveal displacements in the stretching vibrational frequencies associated with the O-H and N-H bonds of NMDG groups that corroborate the formation of chelate complexes on the resin surfaces. The atomic-level compositions and structures are related to boron adsorption properties of resin materials synthesized under different conditions, which have important remediation applications.

9.
Langmuir ; 35(48): 15651-15660, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31454249

RESUMO

Dissolution of mineral surfaces at asymmetric solid-liquid-solid interfaces in aqueous solutions occurs in technologically relevant processes, such as chemical/mechanical polishing (CMP) for semiconductor fabrication, formation and corrosion of structural materials, and crystallization of materials relevant to heterogeneous catalysis or drug delivery. In some such processes, materials at confined interfaces exhibit dissolution rates that are orders of magnitude larger than dissolution rates of isolated surfaces. Here, the dissolution of silica and alumina in close proximity to a charged gold surface or mica in alkaline solutions of pH 10-11 is shown to depend on the difference in electrostatic potentials of the surfaces, as determined from measurements conducted using a custom-built electrochemical pressure cell and a surface forces apparatus (SFA). The enhanced dissolution is proposed to result from overlap of the electrostatic double layers between the dissimilar charged surfaces at small intersurface separation distances (<1 Debye length). A semiquantitative model shows that overlap of the electric double layers can change the magnitude and direction of the electric field at the surface with the less negative potential, which results in an increase in the rate of dissolution of that surface. When the surface electrochemical properties were changed, the dissolution rates of silica and alumina were increased by up to 2 orders of magnitude over the dissolution rates of isolated compositionally similar surfaces under otherwise identical conditions. The results provide new insights on dissolution processes that occur at solid-liquid-solid interfaces and yield design criteria for controlling dissolution through electrochemical modification, with relevance to diverse technologies.

10.
J Environ Manage ; 238: 243-250, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852400

RESUMO

We report the synthesis of mesoporous TiO2 and mesoporous Fe2O3-TiO2 catalysts by using a structure-directing-surfactant method, their characterization and their employment as photocatalysts for norfloxacin degradation in aqueous solution. The main findings show that in the presence of both O2 and H2O2, Fe-containing mesoporous titania (Fe2O3-TiO2), with iron percentages between 1 and 3 wt%, exhibited norfloxacin degradation rates more than 60% greater than otherwise identical mesoporous titania without iron. Furthermore, the activity of the mesoporous composite catalysts also exceeds that of titania when illuminated with 405 nm light-emitting diodes. Iron loading improved the photocatalytic activity for norfloxacin degradation with values of apparent reaction rate constants of 0.037 min-1 and 0.076 min-1 with 1 and 3 surface wt.% of iron, respectively. An optimum of activity was found with the 3 wt% Fe2O3-TiO2 catalyst. Under these conditions, 10 mg/L of norfloxacin is reacted essentially to completion and 90% of total organic carbon conversion was obtained within 120 min of reaction. This higher organic carbon conversion degree was reached due to the photo-oxidation of short-chain organic acids. The high activity of the as-synthesized mesoporous composites is attributed to the additional iron phase which led to the different reactions for H2O2 decomposition, but also due to the improvement in light absorbance. Finally, the activity of the most active catalyst was found to be stable over multiple sequential runs, which was related to a negligible amount of iron leaching (<0.1%) from these materials.


Assuntos
Norfloxacino , Água , Catálise , Compostos Férricos , Peróxido de Hidrogênio
11.
Angew Chem Int Ed Engl ; 58(19): 6255-6259, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912601

RESUMO

The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid-state NMR and synchrotron X-ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al-SSZ-70. Through-covalent-bond 2D 27 Al{29 Si} J-correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large-pore interlayer channels of Al-SSZ-70, while only 6 % are in the sub-nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ-70.

12.
J Am Chem Soc ; 140(11): 3892-3906, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29533066

RESUMO

A versatile synthetic protocol is reported that allows high concentrations of functionally active membrane proteins to be incorporated in mesostructured silica materials. Judicious selections of solvent, surfactant, silica precursor species, and synthesis conditions enable membrane proteins to be stabilized in solution and during subsequent coassembly into silica-surfactant composites with nano- and mesoscale order. This was demonstrated by using a combination of nonionic ( n-dodecyl-ß-d-maltoside or Pluronic P123), lipid-like (1,2-diheptanoyl- s n-glycero-3-phosphocholine), and perfluoro-octanoate surfactants under mild acidic conditions to coassemble the light-responsive transmembrane protein proteorhodopsin at concentrations up to 15 wt % into the hydrophobic regions of worm-like mesostructured silica materials in films. Small-angle X-ray scattering, electron paramagnetic resonance spectroscopy, and transient UV-visible spectroscopy analyses established that proteorhodopsin molecules in mesostructured silica films exhibited native-like function, as well as enhanced thermal stability compared to surfactant or lipid environments. The light absorbance properties and light-activated conformational changes of proteorhodopsin guests in mesostructured silica films are consistent with those associated with the native H+-pumping mechanism of these biomolecules. The synthetic protocol is expected to be general, as demonstrated also for the incorporation of functionally active cytochrome c, a peripheral membrane protein enzyme involved in electron transport, into mesostructured silica-cationic surfactant films.


Assuntos
Citocromos c/química , Rodopsinas Microbianas/química , Dióxido de Silício/química , Citocromos c/metabolismo , Estrutura Molecular , Rodopsinas Microbianas/metabolismo , Dióxido de Silício/metabolismo , Tensoativos/química , Tensoativos/metabolismo
13.
J Am Chem Soc ; 139(37): 13006-13012, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724288

RESUMO

The structures and properties of membrane proteins in lipid bilayers are expected to closely resemble those in native cell-membrane environments, although they have been difficult to elucidate. By performing solid-state NMR measurements at very fast (100 kHz) magic-angle spinning rates and at high (23.5 T) magnetic field, severe sensitivity and resolution challenges are overcome, enabling the atomic-level characterization of membrane proteins in lipid environments. This is demonstrated by extensive 1H-based resonance assignments of the fully protonated heptahelical membrane protein proteorhodopsin, and the efficient identification of numerous 1H-1H dipolar interactions, which provide distance constraints, inter-residue proximities, relative orientations of secondary structural elements, and protein-cofactor interactions in the hydrophobic transmembrane regions. These results establish a general approach for high-resolution structural studies of membrane proteins in lipid environments via solid-state NMR.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Prótons , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
14.
J Am Chem Soc ; 139(46): 16803-16812, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29068208

RESUMO

The structure of the calcined form of the high-silica zeolite SSZ-70 has been elucidated by combining synchrotron X-ray powder diffraction (XRPD), high-resolution transmission electron microscopy (HRTEM), and two-dimensional (2D) dynamic nuclear polarization (DNP)-enhanced NMR techniques. The framework structure of SSZ-70 is a polytype of MWW and can be viewed as a disordered ABC-type stacking of MWW-layers. HRTEM and XRPD simulations show that the stacking sequence is almost random, with each layer being shifted by ±1/3 along the ⟨110⟩ direction with respect to the previous one. However, a small preponderance of ABAB stacking could be discerned. DNP-enhanced 2D 29Si{29Si} J-mediated NMR analyses of calcined Si-SSZ-70 at natural 29Si isotopic abundance (4.7%) establish the through-covalent-bond 29Si-O-29Si connectivities of distinct Si sites in the framework. The DNP-NMR results corroborate the presence of MWW layers and, more importantly, identify two distinct types of Q3 silanol species at the surfaces of the interlayer regions. In the first, an isolated silanol group protrudes into the interlayer space pointing toward the pocket in the adjacent layer. In the second, the surrounding topology is the same, but the isolated -SiOH group is missing, leaving a nest of three Si-O-H groups in place of the three Si-O-Si linkages. The analyses clarify the structure of this complicated material, including features that do not exhibit long-range order. With these insights, the novel catalytic behavior of SSZ-70 can be better understood and opportunities for enhancement recognized.

15.
Angew Chem Int Ed Engl ; 56(19): 5164-5169, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28378529

RESUMO

Mesostructured MFI zeolite nanosheets are established to crystallize non-topotactically through a nanolayered silicate intermediate during hydrothermal synthesis. Solid-state 2D NMR analyses, with sensitivity enhanced by dynamic nuclear polarization (DNP), provide direct evidence of shared covalent 29 Si-O-29 Si bonds between intermediate nanolayered silicate moieties and the crystallizing MFI zeolite nanosheet framework.

16.
J Am Chem Soc ; 137(25): 8096-112, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26029958

RESUMO

Competitive adsorption of dilute quantities of certain organic molecules and water at silicate surfaces strongly influence the rates of silicate dissolution, hydration, and crystallization. Here, we determine the molecular-level structures, compositions, and site-specific interactions of adsorbed organic molecules at low absolute bulk concentrations on heterogeneous silicate particle surfaces at early stages of hydration. Specifically, dilute quantities (∼0.1% by weight of solids) of the disaccharide sucrose or industrially important phosphonic acid species slow dramatically the hydration of low-surface-area (∼1 m(2)/g) silicate particles. Here, the physicochemically distinct adsorption interactions of these organic species are established by using dynamic nuclear polarization (DNP) surface-enhanced solid-state NMR techniques. These measurements provide significantly improved signal sensitivity for near-surface species that is crucial for the detection and analysis of dilute adsorbed organic molecules and silicate species on low-surface-area particles, which until now have been infeasible to characterize. DNP-enhanced 2D (29)Si{(1)H}, (13)C{(1)H}, and (31)P{(1)H} heteronuclear correlation and 1D (29)Si{(13)C} rotational-echo double-resonance NMR measurements establish hydrogen-bond-mediated adsorption of sucrose at distinct nonhydrated and hydrated silicate surface sites and electrostatic interactions with surface Ca(2+) cations. By comparison, phosphonic acid molecules are found to adsorb electrostatically at or near cationic calcium surface sites to form Ca(2+)-phosphonate complexes. Although dilute quantities of both types of organic molecules effectively inhibit hydration, they do so by adsorbing in distinct ways that depend on their specific architectures and physicochemical interactions. The results demonstrate the feasibility of using DNP-enhanced NMR techniques to measure and assess dilute adsorbed molecules and their molecular interactions on low-surface-area materials, notably for compositions that are industrially relevant.


Assuntos
Silicatos/química , Adsorção , Cálcio/química , Cátions Bivalentes/química , Ligação de Hidrogênio , Sacarose/química , Propriedades de Superfície , Água/química
17.
Phys Chem Chem Phys ; 17(33): 21664-82, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26227574

RESUMO

Boron heteroatom distributions are shown to be significantly different in two closely related layered borosilicates synthesized with subtly different alkylammonium surfactant species. The complicated order and disorder near framework boron sites in both borosilicates were characterized at the molecular level by using a combination of multi-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy techniques and first-principles calculations. Specifically, two-dimensional (2D) solid-state J-mediated (through-bond) (11)B{(29)Si} NMR analyses provide direct and local information on framework boron sites that are covalently bonded to silicon sites through bridging oxygen atoms. The resolution and identification of correlated signals from distinct (11)B-O-(29)Si site pairs reveal distinct distributions of boron heteroatoms in layered borosilicate frameworks synthesized with the different C16H33N(+)Me3 and C16H33N(+)Me2Et structure-directing surfactant species. The analyses establish that boron atoms are distributed non-selectively among different types of silicon sites in the layered C16H33N(+)Me3-directed borosilicate framework, whereas boron atoms are preferentially incorporated into incompletely condensed Q(3)-type sites in the C16H33N(+)Me2Et-directed borosilicate material. Interestingly, framework boron species appear to induce framework condensation of their next-nearest-neighbor silicon sites in the C16H33N(+)Me3-directed borosilicate. By comparison, the incorporation of boron atoms is found to preserve the topology of the C16H33N(+)Me2Et-directed borosilicate frameworks. The differences in boron site distributions and local boron-induced structural transformations for the two surfactant-directed borosilicates appear to be due to different extents of cross-linking of the siliceous frameworks. The molecular-level insights are supported by density functional theory (DFT) calculations, which show the distinct influences of boron atoms on the C16H33N(+)Me3- and C16H33N(+)Me2Et-directed borosilicate frameworks, consistent with the experimental observations.

18.
Angew Chem Int Ed Engl ; 54(3): 927-31, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25412768

RESUMO

Mesoporous zeolites are a new and technologically important class of materials that exhibit improved diffusion and catalytic reaction properties compared to conventional zeolites with sub-nanometer pore dimensions. During their syntheses, the transient developments of crystalline and mesoscopic order are closely coupled and challenging to control. Correlated solid-state NMR, X-ray, and electron microscopy analyses yield new molecular-level insights on the interactions and distributions of complicated organic structure-directing agents with respect to crystallizing zeolite frameworks. The analyses reveal the formation of an intermediate layered silicate phase, which subsequently transforms into zeolite nanosheets with uniform nano- and mesoscale porosities. Such materials result from coupled surfactant self-assembly and inorganic crystallization processes, the interplay between which governs the onset and development of framework structural order on different length and time scales.

19.
J Am Chem Soc ; 136(27): 9608-18, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24932575

RESUMO

The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems.

20.
Soft Matter ; 10(30): 5618-27, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24965195

RESUMO

We report on how the dynamical and structural properties of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C6C1ImTFSI) change upon different degrees of confinement in silica gels. The apparent diffusion coefficients of the individual ions are measured by (1)H and (19)F pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy, while the intermolecular interactions in the ionogels are elucidated by Raman spectroscopy. In addition, the local structure of the ionic liquid at the silica interface is probed by solid-state NMR spectroscopy. Importantly, we extend this study to a wider range of ionic liquid-to-silica molar ratios (x) than has been investigated previously, from very low (high degree of confinement) to very high (liquid-like gels) ionic liquid contents. Diffusion NMR measurements indicate that a solvation shell, with a significantly lower mobility than the bulk ionic liquid, forms at the silica interface. Additionally, the diffusion of the C6C1Im(+) and TFSI(-) ions decreases more rapidly below an observed molar ratio threshold (x < 1), with the intrinsic difference in the self-diffusion coefficient between the cation and anion becoming less pronounced. For ionic liquid molar ratio of x < 1, Raman spectroscopy reveals a different conformational equilibrium for the TFSI(-) anions compared to the bulk ionic liquid, with an increased population of the cisoid isomers with respect to the transoid. Concomitantly, at these high degrees of confinement the TFSI(-) anion experiences stronger ion-ion interactions as indicated by the evolution of the TFSI(-) characteristic vibrational mode at ∼740 cm(-1). Furthermore, solid-state 2D (29)Si{(1)H} HETCOR NMR measurements establish the interactions of the ionic liquid species with the silica surface, where the presence of adsorbed water results in weaker interactions between (29)Si surface moieties and the hydrophobic alkyl protons of the cationic C6C1Im(+) molecules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa