Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Express ; 31(4): 5767-5776, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823849

RESUMO

The temporal modulation of an electron bunch train accelerated from a foil target irradiated by an intense laser pulse is studied by measuring the coherent transition radiation (CTR) from the rear surface of a target. We experimentally obtained CTR spectra from a 1 µm thick foil target irradiated at a maximum intensity of 6.5 × 1019 W/cm2. Spectral redshifts of the emitted radiation corresponding to increases in laser intensity were observed. These measurements were compared with the theoretical calculation of CTR spectra considering ultrafast surface dynamics, such as plasma surface oscillation and relativistically induced transparency. Plasma surface oscillations induce a spectral redshift, while relativistic transparency causes a spectral blueshift. Both effects are required to find reasonable agreement with the experiment over the entire range of laser intensities.

2.
Opt Express ; 26(5): 6294-6301, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529821

RESUMO

Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics - spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. The spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage to generate uniform warm dense conditions in a large area.

3.
Nature ; 482(7383): 59-62, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22278059

RESUMO

Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>10(17) watts per cm(2), previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 10(6) kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray-matter interactions, and illustrate the importance of electron-ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.

4.
Phys Rev Lett ; 119(7): 075002, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949680

RESUMO

A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10^{16} -10^{17} W/cm^{2}. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray free-electron laser pulses.

5.
Phys Rev Lett ; 114(1): 015003, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615475

RESUMO

High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

6.
Phys Rev E ; 109(4-2): 045207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755933

RESUMO

The interplay of kinetic electron physics and atomic processes in ultrashort laser-plasma interactions provides a comprehensive understanding of the impact of the electron energy distribution on plasma properties. Notably, nonequilibrium electrons play a vital role in collisional ionization, influencing ionization degrees and spectra. This paper introduces a computational model that integrates the physics of kinetic electrons and atomic processes, utilizing a Boltzmann equation for nonequilibrium electrons and a collisional-radiative model for atomic state populations. The model is used to investigate the influence of nonequilibrium electrons on collisional ionization rates and its effect on the population distribution, as observed in a widely known experiment [Young et al., Nature (London) 466, 56 (2010)0028-083610.1038/nature09177]. The study reveals a significant nonequilibrium electron presence during XFEL-matter interactions, profoundly affecting collisional ionization rates in the gas plasma, thereby necessitating careful consideration of the Collisional-Radiative model applied to such systems.

7.
Phys Rev Lett ; 109(24): 245003, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368333

RESUMO

The x-ray intensities made available by x-ray free electron lasers (FEL) open up new x-ray matter interaction channels not accessible with previous sources. We report here on the resonant generation of Kα emission, that is to say the production of copious Kα radiation by tuning the x-ray FEL pulse to photon energies below that of the K edge of a solid aluminum sample. The sequential absorption of multiple photons in the same atom during the 80 fs pulse, with photons creating L-shell holes and then one resonantly exciting a K-shell electron into one of these holes, opens up a channel for the Kα production, as well as the absorption of further photons. We demonstrate rich spectra of such channels, and investigate the emission produced by tuning the FEL energy to the K-L transitions of those highly charged ions that have transition energies below the K edge of the cold material. The spectra are sensitive to x-ray intensity dependent opacity effects, with ions containing L-shell holes readily reabsorbing the Kα radiation.

8.
Phys Rev Lett ; 109(6): 065002, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006275

RESUMO

We have used the Linac Coherent Light Source to generate solid-density aluminum plasmas at temperatures of up to 180 eV. By varying the photon energy of the x rays that both create and probe the plasma, and observing the K-α fluorescence, we can directly measure the position of the K edge of the highly charged ions within the system. The results are found to disagree with the predictions of the extensively used Stewart-Pyatt model, but are consistent with the earlier model of Ecker and Kröll, which predicts significantly greater depression of the ionization potential.

9.
Phys Rev Lett ; 106(16): 167601, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599412

RESUMO

We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 015401, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658765

RESUMO

The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.

11.
Rev Sci Instrum ; 88(5): 053501, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571471

RESUMO

Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. The results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.

12.
Sci Rep ; 6: 18843, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26733236

RESUMO

Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. Data are compared with various theoretical models.

13.
Nat Commun ; 7: 11713, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210741

RESUMO

The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations.

14.
Nat Commun ; 6: 6397, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25731816

RESUMO

The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.

15.
Sci Rep ; 4: 4724, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24740172

RESUMO

The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called "molecular movie" within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.


Assuntos
Lasers , Espectroscopia por Absorção de Raios X , Absorção , Elétrons , Luz , Molibdênio/química
16.
Sci Rep ; 4: 5214, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909903

RESUMO

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

17.
Phys Rev Lett ; 102(20): 205003, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519036

RESUMO

Hot electrons are produced, guided into a beam, and transported over 60 microm in a small canal to the outside tip of a structured cone target. The diameter of the electron beam is defined by the inside tip diameter. This carries the potential to create electron beams of specific diameters propagating over specific distances of interest for several applications.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 2): 055402, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20365036

RESUMO

The transport of energetic electron beams generated from aluminum foils irradiated by ultraintense laser pulses has been studied by imaging coherent transition radiation from the rear side of the target. Two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and jxB heating, accelerate the electrons at the targets front side and drive them to different directions, with different temperatures. This interpretation is consistent with 3D-particle-in-cell simulations.

19.
Phys Rev Lett ; 101(1): 015002, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764119

RESUMO

Using an ultrafast pulse of mega-electron-volt energy protons accelerated from a laser-irradiated foil, we have heated solid density aluminum plasmas to temperatures in excess of 15 eV. By measuring the temperature and the expansion rate of the heated Al plasma simultaneously and with picosecond time resolution we have found the predictions of the SESAME Livermore equation-of-state (LEOS) tables to be accurate to within 18%, in this dense plasma regime, where there have been few previous experimental measurements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa