RESUMO
Highly selective etching of silicon nitride over silicon oxide is one of the most important processes especially for the fabrication of vertical semiconductor devices including 3D NAND (Not And) devices. In this study, isotropic dry etching characteristics of SiNxand SiO2using ClF3/Cl2remote plasmas have been investigated. The increase of Cl2percent in ClF3/Cl2gas mixture increased etch selectivity of SiNxover SiO2while decreasing SiNxetch rate. By addition of 15% Cl to ClF3/Cl2, the etch selectivity higher than 500 could be obtained with the SiNxetch rate of â¼8 nm min-1, and the increase of Cl percent to 20% further increased the etch selectivity to higher than 1000. It was found that SiNxcan be etched through the reaction from Si-N to Si-F and Si-Cl (also from Si-Cl to Si-F) while SiO2can be etched only through the reaction from Si-O to Si-F, and which is also in extremely low reaction at room temperature. When SiNx/SiO2layer stack was etched using ClF3/Cl2(15%), extremely selective removal of SiNxlayer in the SiNx/SiO2layer stack could be obtained without noticeable etching of SiO2layer in the stack and without etch loading effect.
RESUMO
Precise and selective removal of silicon nitride (SiNx) over silicon oxide (SiOy) in a oxide/nitride stack is crucial for a current three dimensional NOT-AND type flash memory fabrication process. In this study, fast and selective isotropic etching of SiNx over SiOy has been investigated using a ClF3/H2 remote plasma in an inductively coupled plasma system. The SiNx etch rate over 80 nm/min with the etch selectivity (SiNx over SiOy) of ~ 130 was observed under a ClF3 remote plasma at a room temperature. Furthermore, the addition of H2 to the ClF3 resulted in an increase of etching selectivity over 200 while lowering the etch rate of both oxide and nitride due to the reduction of F radicals in the plasma. The time dependent-etch characteristics of ClF3, ClF3 & H2 remote plasma showed little loading effect during the etching of silicon nitride on oxide/nitride stack wafer with similar etch rate with that of blank nitride wafer.